Giant, Linearly Increasing Spin-Orbit Torque Efficiency in Symmetry-Broken Spin-Orbit Torque Superlattices

被引:2
|
作者
Lin, Xin [1 ,2 ]
Zhu, Lujun [3 ]
Liu, Qianbiao [1 ]
Zhu, Lijun [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Semicond, State Key Lab Superlatt & Microstruct, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[3] Shaanxi Normal Univ, Coll Phys & Informat Technol, Xian 710062, Peoples R China
基金
中国国家自然科学基金;
关键词
superlattices; spin-orbit torque; anomalousNernst effect; spin current;
D O I
10.1021/acs.nanolett.3c02823
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Magnetic heterostructures with high spin-orbit torque efficiency and low impedance have great promise for low-power spintronic technologies. We report a symmetry-broken spin-orbit superlattice [Pt0.75Cu0.25/Co/Ta](n), in which the dampinglike spin-orbit torque efficiency accumulates linearly with the repeat number n and achieves a giant value of >200% when n = 16, which is 100 times stronger than that of a conventional magnetic heterostructure with a clean Pt (e.g., 2% at a resistivity of 7 mu Omega cm). The giant spin-orbit torque effect arises predominantly from the spin Hall effect of Pt0.75Cu0.25. The anomalous Nernst effect increases remarkably as the repeat number n increases, implying a critical need to include the thermal effect in the analysis of magnetic superlattices and multilayers. The giant spin-orbit torque, low resistivity, and strong anomalous Nernst effect suggest the great potential of the superlattice [Pt0.75Cu0.25/Co/Ta](n) for low-power memory and logic technologies as well as high-performance thermoelectric battery and sensor applications.
引用
收藏
页码:9420 / 9427
页数:8
相关论文
共 50 条
  • [1] Memristive switching by bulk spin-orbit torque in symmetry-broken ferromagnetic films
    Xie, Ronghuan
    Wang, Shun
    Cai, Li
    Cui, Xiaotian
    Liu, Senmiao
    Cao, Qiang
    Zhang, Changwen
    Huang, Qikun
    Yan, Shishen
    APPLIED PHYSICS LETTERS, 2022, 120 (19)
  • [2] Detection of spin-orbit torque with spin rotation symmetry
    Wang, Tao
    Lendinez, Sergi
    Jungfleisch, M. Benjamin
    Kolodzey, James
    Xiao, John Q.
    Fan, Xin
    APPLIED PHYSICS LETTERS, 2020, 116 (01)
  • [3] Thermal spin-orbit torque with Dresselhaus spin-orbit coupling
    Xue, Chun-Yi
    Wang, Ya-Ru
    Wang, Zheng-Chuan
    EUROPEAN PHYSICAL JOURNAL B, 2024, 97 (02):
  • [4] Spin-orbit torque in antiferromagnets
    Song, C.
    Zhou, X.
    Chen, X.
    Zhang, P.
    Shi, G.
    Pan, F.
    2018 IEEE INTERNATIONAL MAGNETIC CONFERENCE (INTERMAG), 2018,
  • [5] Interfacial spin-orbit torque without bulk spin-orbit coupling
    Emori, Satoru
    Nan, Tianxiang
    Belkessam, Amine M.
    Wang, Xinjun
    Matyushov, Alexei D.
    Babroski, Christopher J.
    Gao, Yuan
    Lin, Hwaider
    Sun, Nian X.
    PHYSICAL REVIEW B, 2016, 93 (18)
  • [6] Symmetry of spin-orbit torque induced meron annihilation
    Jiang, Siyuan
    Gao, Nan
    APPLIED PHYSICS LETTERS, 2024, 124 (08)
  • [7] Spin-orbit torque efficiency improved by BiSePt alloy
    He Hao-Bin
    Lan Xiu-Kai
    Ji Yang
    ACTA PHYSICA SINICA, 2023, 72 (13)
  • [8] Investigation of spin-orbit torque efficiency in CuBi alloys
    Tatsuoka, Katsuhiro
    Aoki, Motomi
    Funato, Mitsuru
    Ohshima, Ryo
    Ando, Yuichiro
    Shiraishi, Masashi
    Physical Review B, 2024, 110 (09)
  • [9] Spin-Orbit Torque and Geometrical Backscattering
    Tan, Seng Ghee
    Huang, Che-Chun
    Jalil, Mansoor B. A.
    Chang, Ching-Ray
    Cheng, Szu-Cheng
    SPIN, 2024, 14 (03)
  • [10] Manipulation of Magnetization by Spin-Orbit Torque
    Li, Yucai
    Edmonds, Kevin William
    Liu, Xionghua
    Zheng, Houzhi
    Wang, Kaiyou
    ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (1-2)