Unsupervised image segmentation with Gaussian Pairwise Markov Fields

被引:4
|
作者
Gangloff, Hugo [1 ,2 ]
Courbot, Jean-Baptiste [3 ]
Monfrini, Emmanuel [4 ]
Collet, Christophe [1 ]
机构
[1] Univ Strasbourg, CNRS, ICube, UMR 7357, 300 Bd Sebastien Brant, F-67400 Illkirch Graffenstaden, France
[2] GEPROVAS, Strasbourg, France
[3] Univ Haute Alsace, IRIMAS, UR 7499, Mulhouse, France
[4] Inst Polytech Paris, Telecom SudParis, SAMOVAR, Palaiseau, France
关键词
Unsupervised image segmentation; Pairwise Markov Fields; Gaussian Markov Fields; Parameter estimation;
D O I
10.1016/j.csda.2021.107178
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Modeling strongly correlated random variables is a critical task in the context of latent variable models. A new probabilistic model, called Gaussian Pairwise Markov Field, is presented to generalize existing Markov Fields latent variables models, and to introduce more correlations between variables. This is done by considering the correlations within Gaussian Markov Random Fields models which are much richer than in the classical Markov Field models. The assets of the Gaussian Pairwise Markov Field model are explained. In particular, it offers a generalization of the classical Markov Field modelization that is highlighted. The new model is also considered in the practical case of unsupervised segmentation of images corrupted by long-range spatially-correlated noise, producing interesting new results. (C) 2021 Elsevier B.V. All rights reserved.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [1] Pairwise and Hidden Markov Random Fields in Image Segmentation
    Courbot, Jean-Baptiste
    Mazet, Vincent
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 2458 - 2462
  • [2] Unsupervised image segmentation using triplet Markov fields
    Benboudjema, D
    Pieczynski, W
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2005, 99 (03) : 476 - 498
  • [3] Unsupervised image segmentation using Markov Random Fields
    Sengur, Abdulkadir
    Turkoglu, Ibrahim
    Ince, M. Cevdet
    ARTIFICIAL INTELLIGENCE AND NEURAL NETWORKS, 2006, 3949 : 158 - 167
  • [4] Unsupervised Segmentation of Switching Pairwise Markov Chains
    Boudaren, Mohamed El Yazid
    Monfrini, Emmanuel
    Pieczynski, Wojciech
    PROCEEDINGS OF THE 7TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA 2011), 2011, : 183 - 188
  • [5] A GENERAL PARAMETRIZATION FRAMEWORK FOR PAIRWISE MARKOV MODELS: AN APPLICATION TO UNSUPERVISED IMAGE SEGMENTATION
    Gangloff, Hugo
    Morales, Katherine
    Petetin, Yohan
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [6] Unsupervised SAR Image Segmentation Based on Conditional Triplet Markov Fields
    Lian, Xiaojie
    Wu, Yan
    Zhao, Wei
    Wang, Fan
    Zhang, Qiang
    Li, Ming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (07) : 1185 - 1189
  • [7] Unsupervised segmentation of hidden Markov fields corrupted by correlated non-Gaussian noise
    An, Lin
    Li, Ming
    Boudaren, Mohamed El Yazid
    Pieczynski, Wojciech
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 102 : 41 - 59
  • [8] Unsupervised SAR Image Segmentation Using Gradient Triplet Markov Fields Model
    Wang, Fan
    Wu, Yan
    Zhang, Peng
    Li, Ming
    Zhang, Qingjun
    2015 IEEE 5TH ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2015, : 561 - 566
  • [9] Unsupervised SAR Image Segmentation Based on Triplet Markov Fields With Graph Cuts
    Gan, Lu
    Wu, Yan
    Wang, Fan
    Zhang, Peng
    Zhang, Qiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (04) : 853 - 857
  • [10] Pairwise Markov fields for segmentation in astronomical hyperspectral images
    Courbot, Jean-Baptiste
    Mazet, Vincent
    Monfrini, Emmanuel
    Collet, Christophe
    SIGNAL PROCESSING, 2019, 163 : 41 - 48