Automated detection of extradural and subdural hematoma for contrast-enhanced CT images in emergency medical care

被引:4
|
作者
Hara, Takeshi [1 ]
Matoba, Naoto [1 ]
Zhou, Xiangrong [1 ]
Yokoi, Shinya [1 ]
Aizawa, Hiroaki [1 ]
Fujita, Hiroshi [1 ]
Sakashita, Keiji [2 ]
Matsuoka, Tetsuya [2 ]
机构
[1] Gifu Univ, Grad Sch Med, Dept Intelligent Image Informat, 1-1 Yanagido, Gifu 50111, Japan
[2] Senshu Crit Care Med Ctr, Dept Crit Care Med, Osaka 5980048, Japan
来源
MEDICAL IMAGING 2007: COMPUTER-AIDED DIAGNOSIS, PTS 1 AND 2 | 2007年 / 6514卷
关键词
contrast enhance CT scans; ER; CAD; brain; hematoma; head; automated detection;
D O I
10.1117/12.710307
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We have been developing the CAD scheme for head and abdominal injuries for emergency medical care. In this work, we have developed an automated method to detect typical head injuries, rupture or strokes of brain. Extradural and subdural hematoma region were detected by comparing technique after the brain areas were registered using warping. We employ 5 normal and 15 stroke cases to estimate the performance after creating the brain model with 50 normal cases. Some of the hematoma regions were detected correctly in all of the stroke cases with no false positive findings on normal cases.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] A deep-learning approach for myocardial fibrosis detection in early contrast-enhanced cardiac CT images
    Penso, Marco
    Babbaro, Mario
    Moccia, Sara
    Baggiano, Andrea
    Carerj, Maria Ludovica
    Guglielmo, Marco
    Fusini, Laura
    Mushtaq, Saima
    Andreini, Daniele
    Pepi, Mauro
    Pontone, Gianluca
    Caiani, Enrico G. G.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10
  • [22] Automated quantification of regional myocardial perfusion by analysis of contrast-enhanced echocardiographic images
    Caiani, EG
    Lang, RM
    Caslini, S
    Korcarz, CE
    Collins, KA
    Mor-Avi, V
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2002, 39 (05) : 386A - 386A
  • [23] Automated quantification of regional myocardial perfusion by analysis of contrast-enhanced echocardiographic images
    Caiani, EG
    Korcarz, CE
    Collins, KA
    Cerutti, S
    Lang, RM
    Mor-Avi, V
    COMPUTERS IN CARDIOLOGY 2002, VOL 29, 2002, 29 : 1 - 4
  • [24] Fully automated deep learning based auto-contouring of liver segments and spleen on contrast-enhanced CT images
    Aashish C. Gupta
    Guillaume Cazoulat
    Mais Al Taie
    Sireesha Yedururi
    Bastien Rigaud
    Austin Castelo
    John Wood
    Cenji Yu
    Caleb O’Connor
    Usama Salem
    Jessica Albuquerque Marques Silva
    Aaron Kyle Jones
    Molly McCulloch
    Bruno C. Odisio
    Eugene J. Koay
    Kristy K. Brock
    Scientific Reports, 14
  • [25] Fully automated deep learning based auto-contouring of liver segments and spleen on contrast-enhanced CT images
    Gupta, Aashish C.
    Cazoulat, Guillaume
    Al Taie, Mais
    Yedururi, Sireesha
    Rigaud, Bastien
    Castelo, Austin
    Wood, John
    Yu, Cenji
    O'Connor, Caleb
    Salem, Usama
    Silva, Jessica Albuquerque Marques
    Jones, Aaron Kyle
    McCulloch, Molly
    Odisio, Bruno C.
    Koay, Eugene J.
    Brock, Kristy K.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [26] Central Venous Catheter Care during Contrast-enhanced CT Response
    Macha, Douglas B.
    Nelson, Rendon C.
    Howle, Laurens E.
    Hollingsworth, John W.
    Schindera, Sebastian T.
    RADIOLOGY, 2010, 255 (02) : 662 - 662
  • [27] Deep convolutional neural network for reduction of contrast-enhanced region on CT images
    Sumida, Iori
    Magome, Taiki
    Kitamori, Hideki
    Das, Indra J.
    Yamaguchi, Hajime
    Kizaki, Hisao
    Aboshi, Keiko
    Yamashita, Kyohei
    Yamada, Yuji
    Seo, Yuji
    Isohashi, Fumiaki
    Ogawa, Kazuhiko
    JOURNAL OF RADIATION RESEARCH, 2019, 60 (05) : 586 - 594
  • [28] Method for Segmentation of Knee Articular Cartilages Based on Contrast-Enhanced CT Images
    Katariina A. H. Myller
    Juuso T. J. Honkanen
    Jukka S. Jurvelin
    Simo Saarakkala
    Juha Töyräs
    Sami P. Väänänen
    Annals of Biomedical Engineering, 2018, 46 : 1756 - 1767
  • [29] Deep Learning Assisted Localization of Polycystic Kidney on Contrast-Enhanced CT Images
    Onthoni, Djeane Debora
    Sheng, Ting-Wen
    Sahoo, Prasan Kumar
    Wang, Li-Jen
    Gupta, Pushpanjali
    DIAGNOSTICS, 2020, 10 (12)
  • [30] Segmentation and 3D Visualization of Pheochromocytoma in Contrast-Enhanced CT Images
    Tang, San
    Guo, Yi
    Wang, Yuanyuan
    Cao, Wanli
    Sun, Fukang
    2014 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), VOLS 1-2, 2014, : 39 - 43