Multivariate Bertino copulas

被引:7
|
作者
Garcia, J. J. Arias [1 ]
De Meyer, H. [2 ]
De Baets, B. [1 ]
机构
[1] Univ Ghent, Dept Math Modelling Stat & Bioinformat, KERMIT, Coupure Links 653, B-9000 Ghent, Belgium
[2] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281 S9, B-9000 Ghent, Belgium
关键词
Bertino copula; Copula; Diagonal function; Diagonal section; Lipschitz continuity; n-Copula; QUASI-COPULAS;
D O I
10.1016/j.jmaa.2015.09.059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides a partial answer to an open problem recently posed by R. Mesiar and J. Kalicka regarding the existence of an n-dimensional Bertino copula with a given diagonal section for any n >= 2. It is known that for any 2-diagonal function, there exists a 2-dimensional Bertino copula that has the given 2-diagonal function as diagonal section. In the present paper, we introduce the notion of a regular n-diagonal function and we characterise for any n >= 3 the sets D-n of regular n-diagonal functions for which there exists an n-dimensional Bertino copula whose diagonal section coincides with the given n-diagonal function. We prove that D-n+1 is strictly included in D-n, for all n >= 2, and that D-n is the set of all increasing n/(n - 1)-Lipschitz continuous n-diagonal functions. As a by-product, we show that all marginal copulas of an n-dimensional Bertino copula are Bertino copulas themselves. Examples are given to illustrate the construction of an n-dimensional Bertino copula with a given diagonal section and the characterisation of the sets D-n. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1346 / 1364
页数:19
相关论文
共 50 条
  • [21] Forecasting time series with multivariate copulas
    Simard, Clarence
    Remillard, Bruno
    DEPENDENCE MODELING, 2015, 3 (01): : 59 - 82
  • [22] Tails of multivariate Archimedean copulas.
    Charpentier, Arthur
    Segers, Johan
    INSURANCE MATHEMATICS & ECONOMICS, 2006, 39 (03): : 412 - 412
  • [23] Multivariate and functional covariates and conditional copulas
    Gijbels, Irene
    Omelka, Marek
    Veraverbeke, Noel
    ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 1273 - 1306
  • [24] Multivariate counting processes:: Copulas and beyond
    Baeuerle, Nicole
    Gruebel, Rudolf
    ASTIN BULLETIN, 2005, 35 (02): : 379 - 408
  • [25] Multivariate dependence concepts through copulas
    Wei, Zheng
    Wang, Tonghui
    Nguyen, Phuong Anh
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2015, 65 : 24 - 33
  • [26] Characterizations of Multivariate Implicit Dependence Copulas
    Santiwipanont, Tippawan
    Sumetkijakan, Songkiat
    Yanpaisan, Noppawit
    COMBINING, MODELLING AND ANALYZING IMPRECISION, RANDOMNESS AND DEPENDENCE, SMPS 2024, 2024, 1458 : 440 - 448
  • [27] Bounds on integrals with respect to multivariate copulas
    Preischl, Michael
    DEPENDENCE MODELING, 2016, 4 (01): : 277 - 287
  • [28] Multivariate measures of concordance for copulas and their marginals
    Taylor, M. D.
    DEPENDENCE MODELING, 2016, 4 (01): : 224 - 236
  • [29] On multivariate countermonotonic copulas and their actuarial application
    Ko B.
    Ahn J.Y.
    Lobachevskii Journal of Mathematics, 2016, 37 (4) : 387 - 396
  • [30] Essential closures and supports of multivariate copulas
    Ruankong, P.
    Sumetkijakan, S.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2013, 54 (06) : 762 - 768