Multivariate Bertino copulas

被引:7
|
作者
Garcia, J. J. Arias [1 ]
De Meyer, H. [2 ]
De Baets, B. [1 ]
机构
[1] Univ Ghent, Dept Math Modelling Stat & Bioinformat, KERMIT, Coupure Links 653, B-9000 Ghent, Belgium
[2] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281 S9, B-9000 Ghent, Belgium
关键词
Bertino copula; Copula; Diagonal function; Diagonal section; Lipschitz continuity; n-Copula; QUASI-COPULAS;
D O I
10.1016/j.jmaa.2015.09.059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides a partial answer to an open problem recently posed by R. Mesiar and J. Kalicka regarding the existence of an n-dimensional Bertino copula with a given diagonal section for any n >= 2. It is known that for any 2-diagonal function, there exists a 2-dimensional Bertino copula that has the given 2-diagonal function as diagonal section. In the present paper, we introduce the notion of a regular n-diagonal function and we characterise for any n >= 3 the sets D-n of regular n-diagonal functions for which there exists an n-dimensional Bertino copula whose diagonal section coincides with the given n-diagonal function. We prove that D-n+1 is strictly included in D-n, for all n >= 2, and that D-n is the set of all increasing n/(n - 1)-Lipschitz continuous n-diagonal functions. As a by-product, we show that all marginal copulas of an n-dimensional Bertino copula are Bertino copulas themselves. Examples are given to illustrate the construction of an n-dimensional Bertino copula with a given diagonal section and the characterisation of the sets D-n. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1346 / 1364
页数:19
相关论文
共 50 条
  • [31] On the α-migrativity of multivariate semi-copulas
    Durante, Fabrizio
    Fernandez-Sanchez, Juan
    Juan Quesada-Molina, Jose
    INFORMATION SCIENCES, 2012, 187 : 216 - 223
  • [32] Idempotent and multivariate copulas with fractal support
    Trutschnig, Wolfgang
    Fernandez Sanchez, Juan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (12) : 3086 - 3096
  • [33] On New Types of Multivariate Trigonometric Copulas
    Chesneau, Christophe
    APPLIEDMATH, 2021, 1 (01): : 3 - 17
  • [34] On a family of multivariate copulas for aggregation processes
    Durante, Fabrizio
    Quesada-Molina, Jose Juan
    Ubeda-Flores, Manuel
    INFORMATION SCIENCES, 2007, 177 (24) : 5715 - 5724
  • [35] SEMIPARAMETRIC ESTIMATION OF THE PARAMETERS OF MULTIVARIATE COPULAS
    Liebscher, Eckhard
    KYBERNETIKA, 2009, 45 (06) : 972 - 991
  • [36] A characterization of multivariate independence using copulas
    Gonzalez-Barrios, Jose M.
    Gutierrez-Pena, Eduardo
    Nieves, Juan D.
    Rueda, Raul
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (16) : 5716 - 5726
  • [37] Multivariate Archimedean quasi-copulas
    Nelsen, RB
    Quesada-Molina, JJ
    Rodríguez-Lallena, JA
    Ubeda-Flores, M
    DISTRIBUTIONS WITH GIVEN MARGINALS AND STATISTICAL MODELLING, 2002, : 179 - 185
  • [38] Application of copulas to multivariate control charts
    Verdier, Ghislain
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (12) : 2151 - 2159
  • [39] Evolution of multivariate copulas in discrete processes
    Ishimura, Naoyuki
    Yoshizawa, Yasukazu
    INTERNATIONAL CONFERENCE ON APPLIED ECONOMICS (ICOAE), 2012, 1 : 186 - 192
  • [40] Multivariate bilateral gamma, copulas, CoSkews and CoKurtosis
    Madan, Dilip B.
    Wang, King
    INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2022, 09 (02)