Bounds on integrals with respect to multivariate copulas

被引:2
|
作者
Preischl, Michael [1 ]
机构
[1] Graz Univ Technol, Inst Anal & Number Theory, Kopernikusgasse 24-2, A-8010 Graz, Austria
来源
DEPENDENCE MODELING | 2016年 / 4卷 / 01期
基金
奥地利科学基金会;
关键词
Copulas; linear assignment problems; dependence measure; credit risk;
D O I
10.1515/demo-2016-0016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we present a method to obtain upper and lower bounds on integrals with respect to copulas by solving the corresponding assignment problems (AP's). In their 2014 paper, Hofer and Iaco proposed this approach for two dimensions and stated the generalization to arbitrary dimensons as an open problem. We will clarify the connection between copulas and AP's and thus find an extension to the multidimensional case. Furthermore, we provide convergence statements and, as applications, we consider three dimensional dependence measures as well as an example from finance.
引用
收藏
页码:277 / 287
页数:11
相关论文
共 50 条
  • [1] Optimal Bounds for Integrals with Respect to Copulas and Applications
    Hofer, Markus
    Iaco, Maria Rita
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 161 (03) : 999 - 1011
  • [2] Optimal Bounds for Integrals with Respect to Copulas and Applications
    Markus Hofer
    Maria Rita Iacò
    [J]. Journal of Optimization Theory and Applications, 2014, 161 : 999 - 1011
  • [3] Characterizations of Copulas Attaining the Bounds of Multivariate Kendall's Tau
    Fuchs, Sebastian
    McCord, Yann
    Schmidt, Klaus D.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (02) : 424 - 438
  • [4] Characterizations of Copulas Attaining the Bounds of Multivariate Kendall’s Tau
    Sebastian Fuchs
    Yann McCord
    Klaus D. Schmidt
    [J]. Journal of Optimization Theory and Applications, 2018, 178 : 424 - 438
  • [5] Multivariate copulas, quasi-copulas and lattices
    Fernandez-Sanchez, Juan
    Nelsen, Roger B.
    Ubeda-Flores, Manuel
    [J]. STATISTICS & PROBABILITY LETTERS, 2011, 81 (09) : 1365 - 1369
  • [6] Multivariate Bertino copulas
    Garcia, J. J. Arias
    De Meyer, H.
    De Baets, B.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) : 1346 - 1364
  • [7] MULTIVARIATE COMPOSITE COPULAS
    Xie, Jiehua
    Fang, Jun
    Yang, Jingping
    Bu, Lan
    [J]. ASTIN BULLETIN-THE JOURNAL OF THE INTERNATIONAL ACTUARIAL ASSOCIATION, 2022, 52 (01) : 145 - 184
  • [8] Multivariate stochastic integrals with respect to independently scattered random measures on δ-rings
    Kremer, Dustin
    Scheffler, Hans-Peter
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 95 (1-2): : 39 - 66
  • [9] Multivariate Archimax copulas
    Charpentier, A.
    Fougeres, A. -L.
    Genest, C.
    Neslehova, J. G.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 126 : 118 - 136
  • [10] Universal integrals based on copulas
    Klement, Erich Peter
    Mesiar, Radko
    Spizzichino, Fabio
    Stupnanova, Andrea
    [J]. FUZZY OPTIMIZATION AND DECISION MAKING, 2014, 13 (03) : 273 - 286