Multivariate Bertino copulas

被引:7
|
作者
Garcia, J. J. Arias [1 ]
De Meyer, H. [2 ]
De Baets, B. [1 ]
机构
[1] Univ Ghent, Dept Math Modelling Stat & Bioinformat, KERMIT, Coupure Links 653, B-9000 Ghent, Belgium
[2] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281 S9, B-9000 Ghent, Belgium
关键词
Bertino copula; Copula; Diagonal function; Diagonal section; Lipschitz continuity; n-Copula; QUASI-COPULAS;
D O I
10.1016/j.jmaa.2015.09.059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides a partial answer to an open problem recently posed by R. Mesiar and J. Kalicka regarding the existence of an n-dimensional Bertino copula with a given diagonal section for any n >= 2. It is known that for any 2-diagonal function, there exists a 2-dimensional Bertino copula that has the given 2-diagonal function as diagonal section. In the present paper, we introduce the notion of a regular n-diagonal function and we characterise for any n >= 3 the sets D-n of regular n-diagonal functions for which there exists an n-dimensional Bertino copula whose diagonal section coincides with the given n-diagonal function. We prove that D-n+1 is strictly included in D-n, for all n >= 2, and that D-n is the set of all increasing n/(n - 1)-Lipschitz continuous n-diagonal functions. As a by-product, we show that all marginal copulas of an n-dimensional Bertino copula are Bertino copulas themselves. Examples are given to illustrate the construction of an n-dimensional Bertino copula with a given diagonal section and the characterisation of the sets D-n. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1346 / 1364
页数:19
相关论文
共 50 条
  • [1] The Bertino family of copulas
    Fredricks, GA
    Nelsen, RB
    DISTRIBUTIONS WITH GIVEN MARGINALS AND STATISTICAL MODELLING, 2002, : 81 - 91
  • [2] Extremal behavior of diagonal and Bertino copulas
    Genest, Christian
    Sabbagh, Magid
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (11-12) : 1157 - 1167
  • [3] Multivariate copulas, quasi-copulas and lattices
    Fernandez-Sanchez, Juan
    Nelsen, Roger B.
    Ubeda-Flores, Manuel
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (09) : 1365 - 1369
  • [4] MULTIVARIATE COMPOSITE COPULAS
    Xie, Jiehua
    Fang, Jun
    Yang, Jingping
    Bu, Lan
    ASTIN BULLETIN-THE JOURNAL OF THE INTERNATIONAL ACTUARIAL ASSOCIATION, 2022, 52 (01) : 145 - 184
  • [5] Multivariate Archimax copulas
    Charpentier, A.
    Fougeres, A. -L.
    Genest, C.
    Neslehova, J. G.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 126 : 118 - 136
  • [6] On multivariate Gaussian copulas
    Zezula, Ivan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (11) : 3942 - 3946
  • [7] A class of multivariate copulas with bivariate Frechet marginal copulas
    Yang, Jingping
    Qi, Yongcheng
    Wang, Ruodu
    INSURANCE MATHEMATICS & ECONOMICS, 2009, 45 (01): : 139 - 147
  • [8] A class of multivariate copulas based on products of bivariate copulas
    Mazo, Gildas
    Girard, Stephane
    Forbes, Florence
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 140 : 363 - 376
  • [9] Construction of asymmetric multivariate copulas
    Liebscher, Eckhard
    JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (10) : 2234 - 2250
  • [10] Multivariate upper semilinear copulas
    Arias-Garcia, J. J.
    De Meyer, H.
    De Baets, B.
    INFORMATION SCIENCES, 2016, 360 : 289 - 300