The tropical superpotential for P2

被引:5
|
作者
Prince, Thomas [1 ,2 ]
机构
[1] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[2] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
来源
ALGEBRAIC GEOMETRY | 2020年 / 7卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
mirror symmetry; affine geometry; del Pezzo surfaces; MIRROR SYMMETRY; TORIC VARIETIES; GEOMETRY; SURFACES;
D O I
10.14231/AG-2020-002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an extended worked example of the computation of the tropical superpotential considered by Carl-Pumperla-Siebert. In particular, we consider an affine manifold associated with the complement of a non-singular genus 1 plane curve and calculate the wall-and-chamber decomposition determined by the Gross-Siebert algorithm. Using the results of Carl-Pumperla-Siebert, we determine the tropical superpotential, via broken line counts, in every chamber of this decomposition. The superpotential defines a Laurent polynomial in every chamber, and we show that these are precisely the Laurent polynomials predicted by Coates-Corti-Galkin-Golyshev-Kaspzryk to be mirror to P-2
引用
收藏
页码:30 / 58
页数:29
相关论文
共 50 条
  • [31] P2 receptors and cancer
    White, N
    Burnstock, G
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2006, 27 (04) : 211 - 217
  • [33] ON CURVILINEAR SUBSCHEMES OF P2
    CATALISANO, MV
    GIMIGLIANO, A
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1994, 93 (01) : 1 - 14
  • [34] Introduction: P2 receptors
    Burnstock, G
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2004, 4 (08) : 793 - 803
  • [35] The SLAC P2 Marx
    Kemp, Mark A.
    Benwell, Andrew
    Burkhart, Craig
    MacNair, David
    Nguyen, Minh
    PROCEEDINGS OF THE 2012 IEEE INTERNATIONAL POWER MODULATOR AND HIGH VOLTAGE CONFERENCE, 2012, : 35 - 38
  • [36] P2 for electroless nickel
    Altmayer, F
    PLATING AND SURFACE FINISHING, 2000, 87 (10): : 40 - 43
  • [37] Presynaptic P2 receptors?
    Stone, TW
    O'Kane, EM
    Nikbakht, MR
    Ross, FM
    JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM, 2000, 81 (1-3): : 244 - 248
  • [38] ON CARTESIAN POWERS OF P2
    TAIMANOV, VA
    LECTURE NOTES IN COMPUTER SCIENCE, 1987, 278 : 435 - 435
  • [39] 图Cmk(P2,…,P2,Pl)的最大特征值
    杜先云
    任秋道
    四川师范大学学报(自然科学版), 2009, 32 (01) : 64 - 67
  • [40] On characters of order p (mod p2)
    Murata, L
    ACTA ARITHMETICA, 1999, 87 (03) : 245 - 253