The tropical superpotential for P2

被引:5
|
作者
Prince, Thomas [1 ,2 ]
机构
[1] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[2] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
来源
ALGEBRAIC GEOMETRY | 2020年 / 7卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
mirror symmetry; affine geometry; del Pezzo surfaces; MIRROR SYMMETRY; TORIC VARIETIES; GEOMETRY; SURFACES;
D O I
10.14231/AG-2020-002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an extended worked example of the computation of the tropical superpotential considered by Carl-Pumperla-Siebert. In particular, we consider an affine manifold associated with the complement of a non-singular genus 1 plane curve and calculate the wall-and-chamber decomposition determined by the Gross-Siebert algorithm. Using the results of Carl-Pumperla-Siebert, we determine the tropical superpotential, via broken line counts, in every chamber of this decomposition. The superpotential defines a Laurent polynomial in every chamber, and we show that these are precisely the Laurent polynomials predicted by Coates-Corti-Galkin-Golyshev-Kaspzryk to be mirror to P-2
引用
收藏
页码:30 / 58
页数:29
相关论文
共 50 条
  • [21] A mild route to P2
    Dagani, Ron
    CHEMICAL & ENGINEERING NEWS, 2006, 84 (36) : 7 - 7
  • [22] P2 receptors in the kidney
    Bailey, MA
    Hillman, KA
    Unwin, RJ
    JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM, 2000, 81 (1-3): : 264 - 270
  • [23] Laminar currents in P2
    Dujardin, R
    MATHEMATISCHE ANNALEN, 2003, 325 (04) : 745 - 765
  • [24] Lattes maps on P2
    Rong, Feng
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 93 (06): : 636 - 650
  • [25] P2 receptors and immunity
    Rayah, Amel
    Kanellopoulos, Jean M.
    Di Virgilio, Francesco
    MICROBES AND INFECTION, 2012, 14 (14) : 1254 - 1262
  • [26] P2 purinoceptors and the kidney
    Unwin, R. J.
    Shirley, D. G.
    PURINERGIC SIGNALLING, 2009, 5 (04) : 431 - 431
  • [27] CARTESIAN POWERS P2
    TAIMANOV, VA
    DOKLADY AKADEMII NAUK SSSR, 1983, 270 (06): : 1327 - 1330
  • [28] Hyperbolic maps on P2
    Fornaess, JE
    Sibony, N
    MATHEMATISCHE ANNALEN, 1998, 311 (02) : 305 - 333
  • [29] A nonalgebraic attractor in P2
    Jonsson, M
    Weickert, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (10) : 2999 - 3002