The tropical superpotential for P2

被引:5
|
作者
Prince, Thomas [1 ,2 ]
机构
[1] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[2] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
来源
ALGEBRAIC GEOMETRY | 2020年 / 7卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
mirror symmetry; affine geometry; del Pezzo surfaces; MIRROR SYMMETRY; TORIC VARIETIES; GEOMETRY; SURFACES;
D O I
10.14231/AG-2020-002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an extended worked example of the computation of the tropical superpotential considered by Carl-Pumperla-Siebert. In particular, we consider an affine manifold associated with the complement of a non-singular genus 1 plane curve and calculate the wall-and-chamber decomposition determined by the Gross-Siebert algorithm. Using the results of Carl-Pumperla-Siebert, we determine the tropical superpotential, via broken line counts, in every chamber of this decomposition. The superpotential defines a Laurent polynomial in every chamber, and we show that these are precisely the Laurent polynomials predicted by Coates-Corti-Galkin-Golyshev-Kaspzryk to be mirror to P-2
引用
收藏
页码:30 / 58
页数:29
相关论文
共 50 条
  • [11] Tropical critical points of the superpotential of a flag variety
    Judd, Jamie
    JOURNAL OF ALGEBRA, 2018, 497 : 102 - 142
  • [12] ON CONGRUENCE 2P=2 (P2)
    HAUSNER, M
    SACHS, D
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (09): : 996 - &
  • [13] COMPARISON OF EXPERIMENTAL ALLERGIC NEURITIS INDUCED BY MYELIN, P2 AND P2 WITH GALACTOCEREBROSIDE
    HUGHES, RAC
    POWELL, HC
    JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 1983, 42 (03): : 318 - 318
  • [14] The P2 in the records of a protagonist
    Arfè, G
    PONTE, 2006, 62 (04) : 115 - 118
  • [15] Overview of the P2 receptors
    Boeynaems, JM
    Communi, D
    Gonzalez , NS
    Robaye, B
    SEMINARS IN THROMBOSIS AND HEMOSTASIS, 2005, 31 (02): : 139 - 149
  • [16] P2 in Short Intervals
    李红泽
    数学进展, 1994, (01) : 95 - 95
  • [17] P2 purinoceptors and the kidney
    R. J. Unwin
    D. G. Shirley
    Purinergic Signalling, 2009, 5 : 431 - 431
  • [18] Performing a P2 audit
    Borruso, M
    PLATING AND SURFACE FINISHING, 1997, 84 (01): : 44 - 45
  • [19] GROUPS OF ORDER P2
    KNECHT, G
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (06): : 698 - &
  • [20] ON FREENESS OF DIVISORS ON P2
    Tohaneanu, Stefan O.
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (08) : 2916 - 2932