共 50 条
The tropical superpotential for P2
被引:5
|作者:
Prince, Thomas
[1
,2
]
机构:
[1] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[2] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
来源:
基金:
英国工程与自然科学研究理事会;
关键词:
mirror symmetry;
affine geometry;
del Pezzo surfaces;
MIRROR SYMMETRY;
TORIC VARIETIES;
GEOMETRY;
SURFACES;
D O I:
10.14231/AG-2020-002
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We present an extended worked example of the computation of the tropical superpotential considered by Carl-Pumperla-Siebert. In particular, we consider an affine manifold associated with the complement of a non-singular genus 1 plane curve and calculate the wall-and-chamber decomposition determined by the Gross-Siebert algorithm. Using the results of Carl-Pumperla-Siebert, we determine the tropical superpotential, via broken line counts, in every chamber of this decomposition. The superpotential defines a Laurent polynomial in every chamber, and we show that these are precisely the Laurent polynomials predicted by Coates-Corti-Galkin-Golyshev-Kaspzryk to be mirror to P-2
引用
收藏
页码:30 / 58
页数:29
相关论文