ASYMPTOTIC EQUIVALENCE AND ADAPTIVE ESTIMATION FOR ROBUST NONPARAMETRIC REGRESSION

被引:11
|
作者
Cai, T. Tony [1 ]
Zhou, Harrison H. [2 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
[2] Yale Univ, Dept Stat, New Haven, CT 06511 USA
来源
ANNALS OF STATISTICS | 2009年 / 37卷 / 6A期
基金
美国国家科学基金会;
关键词
Adaptivity; asymptotic equivalence; James-Stein estimator; moderate deviation; nonparametric regression; quantile coupling; robust estimation; unbounded loss function; wavelets; DENSITY-ESTIMATION; APPROXIMATION; INEQUALITY; MODELS; GARCH; SHARP;
D O I
10.1214/08-AOS681
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Asymptotic equivalence theory developed in the literature so far are only for bounded loss functions. This limits the potential applications of the theory because many commonly used loss functions in statistical inference are unbounded. In this paper we develop asymptotic equivalence results for robust nonparametric regression with unbounded loss functions. The results imply that all the Gaussian nonparametric regression procedures can be robustified in a unified way. A key step in our equivalence argument is to bin the data and then take the median of each bin. The asymptotic equivalence results have significant practical implications. To illustrate the general principles of the equivalence argument we consider two important nonparametric inference problems: robust estimation of the reagression function and the estimation of a quadratic functional. In both cases easily implementable procedures are constructed and are shown to enjoy simultaneously a high degree of robustness and adaptivity. Other problems such as construction of confidence sets and nonparametric hypothesis testing can be handled in a similar fashion.
引用
收藏
页码:3204 / 3235
页数:32
相关论文
共 50 条
  • [21] NONPARAMETRIC ESTIMATION IN A SEMIMARTINGALE REGRESSION MODEL. PART 2. ROBUST ASYMPTOTIC EFFICIENCY
    Konev, V.
    Pergamenshchikov, S.
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2009, (08): : 31 - 45
  • [22] Asymptotic equivalence for nonparametric regression with dependent errors: Gauss–Markov processes
    Holger Dette
    Martin Kroll
    [J]. Annals of the Institute of Statistical Mathematics, 2022, 74 : 1163 - 1196
  • [23] Adaptive estimation in the functional nonparametric regression model
    Chagny, Gaelle
    Roche, Angelina
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 146 : 105 - 118
  • [24] ADAPTIVE M-ESTIMATION IN NONPARAMETRIC REGRESSION
    HALL, P
    JONES, MC
    [J]. ANNALS OF STATISTICS, 1990, 18 (04): : 1712 - 1728
  • [25] ADAPTIVE ESTIMATION OF FUNCTIONALS IN NONPARAMETRIC INSTRUMENTAL REGRESSION
    Breunig, Christoph
    Johannes, Jan
    [J]. ECONOMETRIC THEORY, 2016, 32 (03) : 612 - 654
  • [26] Efficient robust nonparametric estimation in a semimartingale regression model
    Konev, Victor
    Pergamenshchikov, Serguei
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (04): : 1217 - 1244
  • [27] Asymptotic equivalence for nonparametric regression with dependent errors: Gauss-Markov processes
    Dette, Holger
    Kroll, Martin
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2022, 74 (06) : 1163 - 1196
  • [28] Robust estimation of error scale in nonparametric regression models
    Ghement, Isabella Rodica
    Ruiz, Marcelo
    Zamar, Ruben
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (10) : 3200 - 3216
  • [29] ROBUST NONPARAMETRIC ESTIMATION VIA WAVELET MEDIAN REGRESSION
    Brown, Lawrence D.
    Cai, T. Tony
    Zhou, Harrison H.
    [J]. ANNALS OF STATISTICS, 2008, 36 (05): : 2055 - 2084
  • [30] Asymptotic equivalence of nonparametric regression and white noise model has its limits
    Efromovich, S
    Samarov, A
    [J]. STATISTICS & PROBABILITY LETTERS, 1996, 28 (02) : 143 - 145