Efficient robust nonparametric estimation in a semimartingale regression model

被引:12
|
作者
Konev, Victor [1 ]
Pergamenshchikov, Serguei [2 ,3 ]
机构
[1] Tomsk State Univ, Dept Appl Math & Cybernet, Tomsk 634050, Russia
[2] Univ Rouen, Lab Math Raphael Salem, F-76801 St Etienne Du Rauvray, France
[3] Tomsk State Univ, Dept Math & Mech, Tomsk 634041, Russia
关键词
Non-asymptotic estimation; Robust risk; Model selection; Sharp oracle inequality; Asymptotic efficiency; SELECTION;
D O I
10.1214/12-AIHP488
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper considers the problem of robust estimating a periodic function in a continuous time regression model with the dependent disturbances given by a general square integrable semimartingale with an unknown distribution. An example of such a noise is a non-Gaussian Ornstein-Uhlenbeck process with jumps (see (J. R. Stat. Soc. Ser B Stat. Methodol. 63 (2001) 167-241), (Ann. Appl. Probab. 18 (2008) 879-908)). An adaptive model selection procedure, based on the weighted least square estimates, is proposed. Under general moment conditions on the noise distribution, sharp non-asymptotic oracle inequalities for the robust risks have been derived and the robust efficiency of the model selection procedure has been shown. It is established that, in the case of the non-Gaussian Ornstein-Uhlenbeck noise, the sharp lower bound for the robust quadratic risk is determined by the limit value of the noise intensity at high frequencies. An example with a martinagale noise exhibits that the risk convergence rate becomes worse if the noise intensity is unbounded.
引用
收藏
页码:1217 / 1244
页数:28
相关论文
共 50 条
  • [1] NONPARAMETRIC ESTIMATION IN A SEMIMARTINGALE REGRESSION MODEL. PART 2. ROBUST ASYMPTOTIC EFFICIENCY
    Konev, V.
    Pergamenshchikov, S.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2009, (08): : 31 - 45
  • [2] ROBUST NONPARAMETRIC REGRESSION ESTIMATION
    BOENTE, G
    FRAIMAN, R
    JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 29 (02) : 180 - 198
  • [3] ESTIMATION OF THE NUISANCE PARAMETER FOR A SEMIMARTINGALE REGRESSION MODEL
    潘一民
    罗少波
    Acta Mathematicae Applicatae Sinica, 1991, (01) : 1 - 5
  • [4] Robust nonparametric estimation for spatial regression
    Gheriballah, Abdelkader
    Laksaci, Ali
    Rouane, Rachida
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (07) : 1656 - 1670
  • [5] Robust estimation for nonparametric generalized regression
    Bianco, Ana M.
    Boente, Graciela
    Sombielle, Susana
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (12) : 1986 - 1994
  • [6] Efficient estimation of a shift in nonparametric regression
    Schick, A
    STATISTICS & PROBABILITY LETTERS, 1999, 41 (03) : 287 - 301
  • [7] Robust adaptive efficient estimation for semi-Markov nonparametric regression models
    Barbu, Vlad Stefan
    Beltaief, Slim
    Pergamenshchikov, Sergey
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2019, 22 (02) : 187 - 231
  • [8] Robust adaptive efficient estimation for semi-Markov nonparametric regression models
    Vlad Stefan Barbu
    Slim Beltaief
    Sergey Pergamenshchikov
    Statistical Inference for Stochastic Processes, 2019, 22 : 187 - 231
  • [9] Nonparametric robust regression estimation for censored data
    Mohamed Lemdani
    Elias Ould Saïd
    Statistical Papers, 2017, 58 : 505 - 525
  • [10] ROBUST NONPARAMETRIC-ESTIMATION OF A REGRESSION FUNCTION
    CHENG, KF
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES B, 1987, 49 : 9 - 22