Asymptotic equivalence for nonparametric regression with dependent errors: Gauss–Markov processes

被引:0
|
作者
Holger Dette
Martin Kroll
机构
[1] Ruhr-Universität Bochum,Fakultät für Mathematik, Lehrstuhl für Stochastik
关键词
Asymptotic equivalence; Nonparametric regression; Dependent errors; Gauss–Markov process; Triangular kernel;
D O I
暂无
中图分类号
学科分类号
摘要
For the class of Gauss–Markov processes we study the problem of asymptotic equivalence of the nonparametric regression model with errors given by the increments of the process and the continuous time model, where a whole path of a sum of a deterministic signal and the Gauss–Markov process can be observed. We derive sufficient conditions which imply asymptotic equivalence of the two models. We verify these conditions for the special cases of Sobolev ellipsoids and Hölder classes with smoothness index >1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$>1/2$$\end{document} under mild assumptions on the Gauss–Markov process. To give a counterexample, we show that asymptotic equivalence fails to hold for the special case of Brownian bridge. Our findings demonstrate that the well-known asymptotic equivalence of the Gaussian white noise model and the nonparametric regression model with i.i.d. standard normal errors (see Brown and Low (Ann Stat 24:2384–2398, 1996)) can be extended to a setup with general Gauss–Markov noises.
引用
收藏
页码:1163 / 1196
页数:33
相关论文
共 50 条
  • [1] Asymptotic equivalence for nonparametric regression with dependent errors: Gauss-Markov processes
    Dette, Holger
    Kroll, Martin
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2022, 74 (06) : 1163 - 1196
  • [2] Asymptotic equivalence for nonparametric regression with non-regular errors
    Alexander Meister
    Markus Reiß
    [J]. Probability Theory and Related Fields, 2013, 155 : 201 - 229
  • [3] Asymptotic equivalence for nonparametric regression with non-regular errors
    Meister, Alexander
    Reiss, Markus
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2013, 155 (1-2) : 201 - 229
  • [4] Asymptotic equivalence of nonparametric autoregression and nonparametric regression
    Grama, Ion G.
    Neumann, Michael H.
    [J]. ANNALS OF STATISTICS, 2006, 34 (04): : 1701 - 1732
  • [5] Asymptotic equivalence of nonparametric regression and white noise
    Brown, LD
    Low, MG
    [J]. ANNALS OF STATISTICS, 1996, 24 (06): : 2384 - 2398
  • [6] Nonparametric regression with dependent errors
    Yang, YH
    [J]. BERNOULLI, 2001, 7 (04) : 633 - 655
  • [7] ASYMPTOTIC EQUIVALENCE AND ADAPTIVE ESTIMATION FOR ROBUST NONPARAMETRIC REGRESSION
    Cai, T. Tony
    Zhou, Harrison H.
    [J]. ANNALS OF STATISTICS, 2009, 37 (6A): : 3204 - 3235
  • [8] Asymptotic equivalence theory for nonparametric regression with random design
    Brown, LD
    Cai, TT
    Low, MG
    Zhang, CH
    [J]. ANNALS OF STATISTICS, 2002, 30 (03): : 688 - 707
  • [9] Asymptotic equivalence for nonparametric regression with multivariate and random design
    Reiss, Markus
    [J]. ANNALS OF STATISTICS, 2008, 36 (04): : 1957 - 1982
  • [10] COMPLETE CONSISTENCY AND ASYMPTOTIC NORMALITY FOR THE WEIGHTED ESTIMATOR IN A NONPARAMETRIC REGRESSION MODEL UNDER DEPENDENT ERRORS
    Samura, Sallieu kabay
    Wang, Shijie
    Chen, Ling
    Wang, Xuejun
    Zhang, Fei
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (02): : 685 - 704