Subwavelength grating slot (SWGS) waveguide at 2 μm for chip-scale data transmission

被引:18
|
作者
Ruan, Zhengsen [1 ]
Shen, Li [1 ]
Zheng, Shuang [1 ]
Wang, Andong [1 ]
Long, Yun [1 ]
Zhou, Nan [1 ]
Wang, Jian [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
integrated optics devices; subwavelength structures; waveguides; SILICON-ON-INSULATOR; COUPLER; NONLINEARITY; WAVELENGTH; PLATFORM; LIGHT;
D O I
10.1515/nanoph-2017-0090
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We propose, design, fabricate and characterize a subwavelength grating slot (SWGS) waveguide on sili-con platform at short-wave infrared (SWIR) wavelength of 2 mu m. The mode guiding mechanism, i.e. SWGS mode, is a combination of surface-enhanced supermode and Bloch mode. We also design and fabricate a low-loss strip-to- SWGS mode converter. We further demonstrate chip-scale direct modulation data transmission at 2 mu m through the fabricated SWGS waveguides. Favorable operation perfor-mance is achieved in the experiment.
引用
收藏
页码:865 / 871
页数:7
相关论文
共 50 条
  • [31] Chip-scale nanophotonic switch based on a waveguide-metamaterial coupling mechanism
    Chen, Lei
    Ye, Han
    Liu, Yumin
    Yu, Zhongyuan
    Wu, Dong
    Ma, Rui
    OPTICS LETTERS, 2017, 42 (20) : 4199 - 4202
  • [32] A Study of Subwavelength Grating Waveguide and Coupling Structures for 0.18 μm CMOS Process
    Wang, Shuo
    Wang, Bin
    Hou, Tianfei
    Zhao, Fusheng
    2019 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: MICRO/NANO PHOTONICS: MATERIALS AND DEVICES, 2020, 11440
  • [33] Petabit-per-second data transmission using a chip-scale microcomb ring resonator source
    Jorgensen, A. A.
    Kong, D.
    Henriksen, M. R.
    Klejs, F.
    Ye, Z.
    Helgason, O. B.
    Hansen, H. E.
    Hu, H.
    Yankov, M.
    Forchhammer, S.
    Andrekson, P.
    Larsson, A.
    Karlsson, M.
    Schroder, J.
    Sasaki, Y.
    Aikawa, K.
    Thomsen, J. W.
    Morioka, T.
    Galili, M.
    Torres-Company, V
    Oxenlowe, L. K.
    NATURE PHOTONICS, 2022, 16 (11) : 798 - +
  • [34] Petabit-per-second data transmission using a chip-scale microcomb ring resonator source
    A. A. Jørgensen
    D. Kong
    M. R. Henriksen
    F. Klejs
    Z. Ye
    Ò. B. Helgason
    H. E. Hansen
    H. Hu
    M. Yankov
    S. Forchhammer
    P. Andrekson
    A. Larsson
    M. Karlsson
    J. Schröder
    Y. Sasaki
    K. Aikawa
    J. W. Thomsen
    T. Morioka
    M. Galili
    V. Torres-Company
    L. K. Oxenløwe
    Nature Photonics, 2022, 16 : 798 - 802
  • [35] Chip-scale frequency combs for data communications in computing systems
    Okawachi, Yoshitomo
    Kim, Bok Young
    Lipson, Michal
    Gaeta, Alexander L.
    OPTICA, 2023, 10 (08): : 977 - 995
  • [36] Designing an optical filter based on subwavelength grating slot waveguide embedded with phase-change material
    Moshfeghifar, Shabnam
    Abbasian, Karim
    Gilarlue, Mohsen M.
    Tavakoli Ghazi Jahani, Mohammad A.
    FREQUENZ, 2022, 76 (7-8) : 471 - 477
  • [37] Surface plasmon polariton coupling induced transmission of subwavelength metallic grating with waveguide layer
    Xu, Zhen-Cheng
    Dong, Biqin
    Xue, Jing
    Yang, Rong
    Lu, Bing-Rui
    Deng, Shaoren
    Li, Zhi-Feng
    Lu, Wei
    Chen, Yifang
    Huq, Ejaz
    Qu, Xin-Ping
    Liu, Ran
    MICROELECTRONIC ENGINEERING, 2010, 87 (5-8) : 1297 - 1299
  • [38] On-chip long-wave infrared gas sensor based on subwavelength grating waveguide
    Liao, Jie
    Zhang, Dong
    Wang, Yuefeng
    Wang, Pengjun
    Fu, Qiang
    Dai, Shixun
    Chen, Weiwei
    Ma, Lingxiao
    Li, Jun
    Dai, Tingge
    Yang, Jianyi
    JOURNAL OF NANOPHOTONICS, 2023, 17 (03)
  • [39] A low-fabrication-temperature, high-gain chip-scale waveguide amplifier
    Bo WANG
    Peiqi ZHOU
    Xingjun WANG
    Yandong HE
    Science China(Information Sciences), 2022, 65 (06) : 247 - 255
  • [40] Ultra-Low Loss Graphene Plasmonic Waveguide for Chip-Scale Terahertz Communication
    Sun, Lei
    Huang, Lihao
    Wang, Yijie
    Lian, Yu
    Huang, Guangjing
    Zhao, Huiling
    Zheng, Kai
    IEEE PHOTONICS JOURNAL, 2021, 13 (04):