Chip-scale nanophotonic switch based on a waveguide-metamaterial coupling mechanism

被引:5
|
作者
Chen, Lei [1 ]
Ye, Han [1 ]
Liu, Yumin [1 ]
Yu, Zhongyuan [1 ]
Wu, Dong [1 ]
Ma, Rui [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Telecommun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
HYPERBOLIC METAMATERIALS; BROAD-BAND; COMPACT;
D O I
10.1364/OL.42.004199
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate a simple and effective waveguide-metamaterial coupling mechanism to achieve switching control of the fundamental TE mode propagation in a silicon photonic stripe waveguide. The metamaterial is made of vertically stacked alternating ITO/Si layers and, theoretically, can be switched between transparent and absorptive regimes via modifying the carrier concentration of the ITO layers. In addition to its small footprint and CMOS-compatible fabrication, simulation results indicate that the optical switch features a high modulation depth (MD) of 27.8 dB, low insertion losses of 0.004 dB, and a wide operating bandwidth of 300 nm where the MD is > 24.6 dB. We expect that this mechanism is a good candidate for designing high-performance and ultra-compact photonic devices in densely integrated nanophotonic circuits and computation systems. (c) 2017 Optical Society of America
引用
收藏
页码:4199 / 4202
页数:4
相关论文
共 50 条
  • [1] A Chip-Scale Nanophotonic Optical Gyroscope
    Khial, Parham P.
    White, Alexander D.
    Hajimiri, Ali
    2019 6TH IEEE INTERNATIONAL SYMPOSIUM ON INERTIAL SENSORS & SYSTEMS (INERTIAL 2019), 2019,
  • [2] Chip-Scale Integration of Nanophotonic-Atomic Magnetic Sensors
    Sebbag, Yoel
    Naiman, Alex
    Talker, Eliran
    Barash, Yefim
    Levy, Uriel
    ACS PHOTONICS, 2021, 8 (01) : 142 - 146
  • [3] Nanophotonic Waveguides for Chip-Scale Raman Spectroscopy: Theoretical Considerations
    Stievater, Todd H.
    Khurgin, Jacob B.
    Holmstrom, Scott A.
    Kozak, Dmitry A.
    Pruessner, Marcel W.
    Rabinovich, William S.
    McGill, R. Andrew
    CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XVII, 2016, 9824
  • [4] Compact chip-scale filter based on curved waveguide Bragg gratings
    Zamek, Steve
    Tan, Dawn T. H.
    Khajavikhan, Mercedeh
    Ayache, Maurice
    Nezhad, Maziar P.
    Fainman, Yeshaiahu
    OPTICS LETTERS, 2010, 35 (20) : 3477 - 3479
  • [5] Silicon nanophotonic devices for chip-scale optical communication applications [Invited]
    Fainman, Y.
    Nezhad, M. P.
    Tan, D. T. H.
    Ikeda, K.
    Bondarenko, O.
    Grieco, A.
    APPLIED OPTICS, 2013, 52 (04) : 613 - 624
  • [6] Chip-Scale Nanophotonic Chemical and Biological Sensors using CMOS Process
    Bollschweiler, Lincoln
    English, Alex
    Baker, R. Jacob
    Kuang, Wan
    Chang, Zi-Chang
    Shih, Ming-Hsiung
    Knowlton, William B.
    Hughes, William L.
    Lee, Jeunghoon
    Yurke, Bernard
    Cockerham, Nankyung Suh
    Tyree, Vance C.
    2009 52ND IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1 AND 2, 2009, : 913 - +
  • [7] Waveguide-integrated chip-scale optomechanical magnetometer
    Gotardo, Fernando
    Carey, Benjamin J.
    Greenall, Hamish
    Harris, Glen I.
    Romero, Erick
    Bulla, Douglas
    Bridge, Elizabeth M.
    Bennett, James S.
    Foster, Scott
    Bowen, Warwick P.
    OPTICS EXPRESS, 2023, 31 (23): : 37663 - 37672
  • [8] DWDM Nanophotonic Interconnects: Toward Terabit/s Chip-Scale Serial Link
    Huang, Tsung-Ching
    Li, Cheng
    Wu, Rui
    Chen, Chin-Hui
    Fiorentino, Marco
    Cheng, Kwang-Ting
    Palermo, Samuel
    Beausoleil, Raymond
    2015 IEEE 58TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2015,
  • [9] Low Loss Nanostructured Polymers for Chip-scale Waveguide Amplifiers
    Chen, George F. R.
    Zhao, Xinyu
    Sun, Yang
    He, Chaobin
    Tan, Mei Chee
    Tan, Dawn T. H.
    SCIENTIFIC REPORTS, 2017, 7
  • [10] Low Loss Nanostructured Polymers for Chip-scale Waveguide Amplifiers
    George F. R. Chen
    Xinyu Zhao
    Yang Sun
    Chaobin He
    Mei Chee Tan
    Dawn T. H. Tan
    Scientific Reports, 7