A pendulous oscillating gyroscopic accelerometer fabricated using deep-reactive ion etching

被引:14
|
作者
Kaiser, TJ [1 ]
Allen, MG
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Montana State Univ, Dept Elect & Comp Engn, Bozeman, MT 59717 USA
[3] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
关键词
accelerometer; deep-reactive ion etching (DRIE); inertial instruments; wafer bonding;
D O I
10.1109/JMEMS.2002.807476
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A silicon pendulous oscillating gyroscopic accelerometer (POGA) was fabricated using deep-reactive ion etching (DRIE) and silicon wafer bonding technologies. A POGA is the micromachining-compatible analog of the pendulous integrating gyroscopic accelerometer (PIGA), which is the basis of the most sensitive accelerometers demonstrated to date. Gyroscopic accelerometers rely on the principle of rebalancing an acceleration-sensing pendulous mass by means of an induced gyroscopic torque. The accelerometer is composed of three individual layers that are assembled into the final instrument. The top layer uses wafer bonding of an oxidized wafer to a handling wafer to create a silicon-on-oxide wafer pair, in which the oxide layer provides electrical isolation between the mechanical members and the handling layer. The middle layer is a two-gimbal torsionally-supported silicon structure and is in turn supported by an underlying drive/sense layer. The micromachined POGA operated according to gyroscopic accelerometer principles, having better than milligram resolution and dynamic ranges in excess of 1 g (open loop) and approximately 12 mg (closed loop).
引用
收藏
页码:21 / 28
页数:8
相关论文
共 50 条
  • [21] Black Germanium fabricated by reactive ion etching
    Martin Steglich
    Thomas Käsebier
    Ernst-Bernhard Kley
    Andreas Tünnermann
    Applied Physics A, 2016, 122
  • [22] Black Germanium fabricated by reactive ion etching
    Steglich, Martin
    Kaesebier, Thomas
    Kley, Ernst-Bernhard
    Tuennermann, Andreas
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (09):
  • [23] Diamond waveguides fabricated by reactive ion etching
    Hiscocks, Mark P.
    Ganesan, Kumaravelu
    Gibson, Brant C.
    Huntington, Shane T.
    Ladouceur, Francois
    Prawer, Steven
    OPTICS EXPRESS, 2008, 16 (24) : 19512 - 19519
  • [24] Energy dispersive X-ray spectroscopy analysis of Si sidewall surface etched by deep-reactive ion etching
    Matsutani, Akihiro
    Nishioka, Kunio
    Sato, Mina
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (06)
  • [25] VIA HOLES FOR GAAS MMICS FABRICATED USING REACTIVE ION ETCHING
    HILTON, KP
    WOODWARD, J
    ELECTRONICS LETTERS, 1985, 21 (21) : 962 - 963
  • [26] High density electrical feedthrough fabricated by deep reactive ion etching of Pyrex glass
    Li, XH
    Abe, T
    Liu, YX
    Esashi, M
    14TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2001, : 98 - 101
  • [27] Surface conditioning effect on vacuum microelectronics components fabricated by deep reactive ion etching
    Phommahaxay, Alain
    Lissorgues, Galle
    Rousseau, Lionel
    Bourouina, Tarik
    Nicole, Pierre
    DTIP 2006: SYMPOSIUM ON DESIGN,TEST, INTEGRATION AND PACKAGING OF MEMS/MOEMS 2006, 2006, : 58 - +
  • [28] G-band rectangular waveguide filter fabricated using deep reactive ion etching and bonding processes
    Zhao Xing-hai
    Shan Guang-cun
    Du Yi-jia
    Bao Jing-fu
    Zhu Hao-shen
    Zheng Ying-bin
    Shek Chan-hung
    Cheng Yong-sheng
    MICRO & NANO LETTERS, 2012, 7 (12): : 1237 - 1240
  • [29] Milestones in deep reactive ion etching
    Laermer, F
    Urban, A
    Bosch, R
    Transducers '05, Digest of Technical Papers, Vols 1 and 2, 2005, : 1118 - 1121
  • [30] Deep reactive ion etching of PMMA
    Zhang, CC
    Yang, CS
    Ding, DF
    APPLIED SURFACE SCIENCE, 2004, 227 (1-4) : 139 - 143