A pendulous oscillating gyroscopic accelerometer fabricated using deep-reactive ion etching

被引:14
|
作者
Kaiser, TJ [1 ]
Allen, MG
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Montana State Univ, Dept Elect & Comp Engn, Bozeman, MT 59717 USA
[3] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
关键词
accelerometer; deep-reactive ion etching (DRIE); inertial instruments; wafer bonding;
D O I
10.1109/JMEMS.2002.807476
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A silicon pendulous oscillating gyroscopic accelerometer (POGA) was fabricated using deep-reactive ion etching (DRIE) and silicon wafer bonding technologies. A POGA is the micromachining-compatible analog of the pendulous integrating gyroscopic accelerometer (PIGA), which is the basis of the most sensitive accelerometers demonstrated to date. Gyroscopic accelerometers rely on the principle of rebalancing an acceleration-sensing pendulous mass by means of an induced gyroscopic torque. The accelerometer is composed of three individual layers that are assembled into the final instrument. The top layer uses wafer bonding of an oxidized wafer to a handling wafer to create a silicon-on-oxide wafer pair, in which the oxide layer provides electrical isolation between the mechanical members and the handling layer. The middle layer is a two-gimbal torsionally-supported silicon structure and is in turn supported by an underlying drive/sense layer. The micromachined POGA operated according to gyroscopic accelerometer principles, having better than milligram resolution and dynamic ranges in excess of 1 g (open loop) and approximately 12 mg (closed loop).
引用
收藏
页码:21 / 28
页数:8
相关论文
共 50 条
  • [31] Deep reactive ion etching of silicon
    Ayón, AA
    Chen, KS
    Lohner, KA
    Spearing, SM
    Sawin, HH
    Schmidt, MA
    MATERIALS SCIENCE OF MICROELECTROMECHANICAL SYSTEMS (MEMS) DEVICES, 1999, 546 : 51 - 61
  • [32] Deep, vertical etching for GaAs using inductively coupled plasma/reactive ion etching
    Booker, Katherine
    Mayon, Yahuitl Osorio
    Jones, Christopher
    Stocks, Matthew
    Blakers, Andrew
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2020, 38 (01):
  • [33] IR imaging using a cantilever-based focal plane array fabricated by deep reactive ion etching technique
    Wang, Xin
    Ma, Shenglin
    Yu, Xiaomei
    Liu, Ming
    Liu, Xiaohua
    Zhao, Yuejin
    APPLIED PHYSICS LETTERS, 2007, 91 (05)
  • [34] Terahertz vacuum electronic circuits fabricated by UV lithographic molding and deep reactive ion etching
    Shin, Young-Min
    Barnett, Larry R.
    Gamzina, Diana
    Luhmann, Neville C., Jr.
    Field, Mark
    Borwick, Robert
    APPLIED PHYSICS LETTERS, 2009, 95 (18)
  • [35] Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si
    Jukam, N
    Sherwin, MS
    APPLIED PHYSICS LETTERS, 2003, 83 (01) : 21 - 23
  • [36] Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications
    Marxer, C
    Thio, C
    Gretillat, MA
    deRooij, NF
    Battig, R
    Anthamatten, O
    Valk, B
    Vogel, P
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1997, 6 (03) : 277 - 285
  • [37] High-power optical micro switch fabricated by deep reactive ion etching (DRIE)
    Cochran, KR
    Fan, L
    DeVoe, DL
    MOEMS AND MINATURIZED SYSTEMS III, 2003, 4983 : 75 - 86
  • [38] Micromachined Faraday cup array using deep reactive ion etching
    Darling, RB
    Scheidemann, AA
    Bhat, KN
    Chen, TC
    SENSORS AND ACTUATORS A-PHYSICAL, 2002, 95 (2-3) : 84 - 93
  • [39] Micromachined faraday cup array using deep reactive ion etching
    Darling, RB
    Scheidemann, AA
    Bhat, KN
    Chen, TC
    14TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2001, : 90 - 93
  • [40] The fabrication of patternable silicon nanotips using deep reactive ion etching
    Kang, Chang Kun
    Lee, Sang Min
    Jung, Im Deok
    Jung, Phill Gu
    Hwang, Sung Jin
    Ko, Jong Soo
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (07)