Reverse engineering of temporal Boolean networks from noisy data using evolutionary algorithms

被引:4
|
作者
Cotta, C [1 ]
Troya, JM [1 ]
机构
[1] Univ Malaga, ETSI Informat, Dept Lenguajes & Ciencias Computac ETSI Informat, E-29071 Malaga, Spain
关键词
biocomputation; genetic network inference; Temporal Boolean Networks; evolutionary algorithms; noisy data;
D O I
10.1016/j.neucom.2003.12.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of inferring a genetic network from noisy data. This is done under the Temporal Boolean Network Model. Owing to the hardness of the problem, we propose an heuristic approach based on the combined utilization of evolutionary algorithms and other existing algorithms. The main features of this approach are the, heuristic seeding of the initial population, the utilization of a specialized recombination operator, and the use of a majority-voting procedure in order to build a consensus solution. Experimental results provide support for the potential usefulness of this approach. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:111 / 129
页数:19
相关论文
共 50 条
  • [41] Temporal White-Box Testing Using Evolutionary Algorithms
    Al Moubayed, Noura
    Windisch, Andreas
    [J]. ICSTW 2009: IEEE INTERNATIONAL CONFERENCE ON SOFTWARE TESTING, VERIFICATION, AND VALIDATION WORKSHOPS, 2009, : 150 - +
  • [42] Reverse Engineering of the Transcriptional Subnetwork in the Yeast Cell Cycle Pathway Using Dynamic Bayesian Networks and Evolutionary Search
    Salehi, Maryam
    Young, Paul G.
    Mousavi, Parvin
    [J]. 2008 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2008, : 209 - +
  • [43] Module identification from heterogeneous biological data using multiobjective evolutionary algorithms
    Calonder, Michael
    Bleuler, Stefan
    Zitzler, Eckart
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN IX, PROCEEDINGS, 2006, 4193 : 573 - 582
  • [44] PREUNN: Protocol Reverse Engineering using Neural Networks
    Kiechle, Valentin
    Boersig, Matthias
    Nitzsche, Sven
    Baumgart, Ingmar
    Becker, Juergen
    [J]. PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY (ICISSP), 2021, : 345 - 356
  • [45] Identification of Bad Data from Phasor Measurement Units Using Evolutionary Algorithms
    Thomas, Polly
    Skariah, Emil Ninan
    Thomas, Sheena
    Thomson, Sandy J.
    Karthikeyan, Shanmugam Prabhakar
    [J]. SOFT COMPUTING FOR PROBLEM SOLVING, 2019, 817 : 93 - 105
  • [46] Reverse-engineering of biochemical reaction networks from spatio-temporal correlations of fluorescence fluctuations
    Tanaka, Natsuki
    Papoian, Garegin A.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2010, 264 (02) : 490 - 500
  • [47] Reverse-engineering ecological then from data
    Martin, Benjamin T.
    Munch, Stephan B.
    Hein, Andrew M.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2018, 285 (1878)
  • [48] RegnANN: Reverse Engineering Gene Networks Using Artificial Neural Networks
    Grimaldi, Marco
    Visintainer, Roberto
    Jurman, Giuseppe
    [J]. PLOS ONE, 2011, 6 (12):
  • [49] Inferring bistable lac operon Boolean regulatory networks using evolutionary computation
    Ruz, Gonzalo A.
    Ashlock, Daniel
    Ledger, Thomas
    Goles, Eric
    [J]. 2017 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2017, : 83 - 90
  • [50] Data Driven System Identification Using Evolutionary Algorithms
    Patnaik, Awhan
    Dutta, Samrat
    Behera, Laxmidhar
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III, 2012, 7665 : 568 - 576