Reverse engineering of temporal Boolean networks from noisy data using evolutionary algorithms

被引:4
|
作者
Cotta, C [1 ]
Troya, JM [1 ]
机构
[1] Univ Malaga, ETSI Informat, Dept Lenguajes & Ciencias Computac ETSI Informat, E-29071 Malaga, Spain
关键词
biocomputation; genetic network inference; Temporal Boolean Networks; evolutionary algorithms; noisy data;
D O I
10.1016/j.neucom.2003.12.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of inferring a genetic network from noisy data. This is done under the Temporal Boolean Network Model. Owing to the hardness of the problem, we propose an heuristic approach based on the combined utilization of evolutionary algorithms and other existing algorithms. The main features of this approach are the, heuristic seeding of the initial population, the utilization of a specialized recombination operator, and the use of a majority-voting procedure in order to build a consensus solution. Experimental results provide support for the potential usefulness of this approach. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:111 / 129
页数:19
相关论文
共 50 条
  • [21] Cooperative-competitive algorithms for evolutionary networks classifying noisy digital images
    Brown, AD
    Card, HC
    [J]. NEURAL PROCESSING LETTERS, 1999, 10 (03) : 223 - 229
  • [22] Cooperative-Competitive Algorithms for Evolutionary Networks Classifying Noisy Digital Images
    A.D. Brown
    H.C. Card
    [J]. Neural Processing Letters, 1999, 10 : 223 - 229
  • [23] Identification of partial differential equations from noisy data with integrated knowledge discovery and embedding using evolutionary neural networks
    Zhou, Hanyu
    Li, Haochen
    Zhao, Yaomin
    [J]. THEORETICAL AND APPLIED MECHANICS LETTERS, 2024, 14 (02)
  • [24] Neutral graph of regulatory Boolean networks using evolutionary computation
    Ruz, Gonzalo A.
    Goles, Eric
    [J]. 2014 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2014,
  • [25] Bio-mimetic evolutionary reverse engineering of genetic regulatory networks
    Marbach, Daniel
    Mattiussi, Claudio
    Floreano, Dario
    [J]. EVOLUTIONARY COMPUTATION, MACHINE LEARNING AND DATA MINING IN BIOINFORMATICS, PROCEEDINGS, 2007, 4447 : 155 - +
  • [26] Lower Bounds for Noisy Wireless Networks using Sampling Algorithms
    Dutta, Chinmoy
    Radhakrishnan, Jaikumar
    [J]. PROCEEDINGS OF THE 49TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2008, : 394 - 402
  • [27] Neural networks and evolutionary algorithms for the prediction of thermodynamic properties for chemical engineering
    Mandischer, M
    Geyer, H
    Ulbig, P
    [J]. SIMULATED EVOLUTION AND LEARNING, 1999, 1585 : 106 - 113
  • [28] On reverse engineering of gene interaction networks using time course data with repeated measurements
    Morrissey, E. R.
    Juarez, M. A.
    Denby, K. J.
    Burroughs, N. J.
    [J]. BIOINFORMATICS, 2010, 26 (18) : 2305 - 2312
  • [29] Robust Extraction of Temporal Correlation from Noisy Data
    Imbriglio, Laura
    Graziosi, Fabio
    [J]. 2009 IEEE VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-5, 2009, : 134 - +
  • [30] Learning Partial Differential Equations from Noisy Data using Neural Networks
    Srivastava, Kashvi
    Ahlawat, Mihir
    Singh, Jaskaran
    Kumar, Vivek
    [J]. UNIVERSITAS RIAU INTERNATIONAL CONFERENCE ON SCIENCE AND ENVIRONMENT 2020 (URICSE-2020), 2020, 1655