Reverse engineering of temporal Boolean networks from noisy data using evolutionary algorithms

被引:4
|
作者
Cotta, C [1 ]
Troya, JM [1 ]
机构
[1] Univ Malaga, ETSI Informat, Dept Lenguajes & Ciencias Computac ETSI Informat, E-29071 Malaga, Spain
关键词
biocomputation; genetic network inference; Temporal Boolean Networks; evolutionary algorithms; noisy data;
D O I
10.1016/j.neucom.2003.12.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of inferring a genetic network from noisy data. This is done under the Temporal Boolean Network Model. Owing to the hardness of the problem, we propose an heuristic approach based on the combined utilization of evolutionary algorithms and other existing algorithms. The main features of this approach are the, heuristic seeding of the initial population, the utilization of a specialized recombination operator, and the use of a majority-voting procedure in order to build a consensus solution. Experimental results provide support for the potential usefulness of this approach. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:111 / 129
页数:19
相关论文
共 50 条
  • [31] Fracture characterization from noisy displacement data using artificial neural networks
    Khaleghi, M.
    Haghighat, E.
    Vahab, M.
    Shahbodagh, B.
    Khalili, N.
    [J]. Engineering Fracture Mechanics, 2022, 271
  • [32] Using Evolutionary Algorithms for Channel Assignment in 802.11 Networks
    Lima, Marlon P.
    Rodrigues, Thales B.
    Alexandre, Rafael F.
    Takahashi, Ricardo H. C.
    Carrano, Eduardo G.
    [J]. 2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR COMMUNICATION SYSTEMS AND NETWORKS (CICOMMS), 2014, : 30 - 37
  • [33] Artificial neural networks design using evolutionary algorithms
    Castillo, PA
    Arenas, MG
    Castillo-Valdivieso, JJ
    Merelo, JJ
    Prieto, A
    Romero, G
    [J]. ADVANCES IN SOFT COMPUTING: ENGINEERING DESIGN AND MANUFACTURING, 2003, : 43 - 52
  • [34] Design of Environmental Sensor Networks Using Evolutionary Algorithms
    Susanto, Ferry
    Budi, Setia
    de Souza, Paulo, Jr.
    Engelke, Ulrich
    He, Jing
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (04) : 575 - 579
  • [35] Fracture characterization from noisy displacement data using artificial neural networks
    Khaleghi, M.
    Haghighat, E.
    Vahab, M.
    Shahbodagh, B.
    Khalili, N.
    [J]. ENGINEERING FRACTURE MECHANICS, 2022, 271
  • [36] Reconstructing Regulatory Networks in Streptomyces using Evolutionary Algorithms
    Thomas, Spencer Angus
    Jin, Yaochu
    Laing, Emma
    Smith, Colin P.
    [J]. 2013 13TH UK WORKSHOP ON COMPUTATIONAL INTELLIGENCE (UKCI), 2013, : 24 - 30
  • [37] Stabilization and Reconstruction of Sampled-Data Boolean Control Networks Under Noisy Sampling Interval
    Sun, Liangjie
    Ching, Wai-Ki
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (04) : 2444 - 2451
  • [38] COMPLEX NETWORKS EVOLUTIONARY DYNAMICS USING GENETIC ALGORITHMS
    Aguilar-Hidalgo, Daniel
    Cordoba Zurita, Antonio
    Lemos Fernandez, Ma Carmen
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (07):
  • [39] An optimized design of optical networks using evolutionary algorithms
    Abedifar, Vahid
    Eshghi, Mohammad
    [J]. JOURNAL OF HIGH SPEED NETWORKS, 2014, 20 (01) : 11 - 27
  • [40] Reverse Engineering Molecular Regulatory Networks from Microarray Data with qp-Graphs
    Castelo, Robert
    Roverato, Alberto
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2009, 16 (02) : 213 - 227