Numerical simulations of critical dynamics in anisotropic magnetic films with the stochastic Landau-Lifshitz-Gilbert equation

被引:11
|
作者
Jin, M. H. [1 ,2 ]
Zheng, B. [1 ,2 ]
Xiong, L. [1 ,2 ]
Zhou, N. J. [3 ]
Wang, L. [1 ]
机构
[1] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Hangzhou Normal Univ, Dept Phys, Hangzhou 310036, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
MONTE-CARLO SIMULATIONS; DEPINNING TRANSITION; THERMAL FLUCTUATIONS; CRITICAL-BEHAVIOR; SPIN DYNAMICS; ANTIFERROMAGNET; TEMPERATURE; XY;
D O I
10.1103/PhysRevE.98.022126
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
With the stochastic Landau-Lifshitz-Gilbert (sLLG) equation, critical dynamic behaviors far from equilibrium or stationary around the order-disorder and pinning-depinning phase transitions in anisotropic magnetic films are investigated. From the dynamic relaxation with and without an external field, the Curie temperature and critical exponents of the order-disorder phase transition are accurately determined. For the pinning-depinning phase transition induced by quenched disorder, the nonstationary creep motion of domain wall activated by finite temperatures is simulated, and the thermal rounding exponent is extracted. The results show that the dynamic universality class of the sLLG equation is different from those of the Monte Carlo dynamics and quenched Edwards-Wilkinson equation, and it may lead to alternative understanding of experiments. The dynamic approach shows its great efficiency for the sLLG equation.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Midpoint numerical technique for stochastic Landau-Lifshitz-Gilbert dynamics
    d'Aquino, M
    Serpico, C
    Coppola, G
    Mayergoyz, ID
    Bertotti, G
    [J]. JOURNAL OF APPLIED PHYSICS, 2006, 99 (08)
  • [2] STOCHASTIC CONTROL OF THE LANDAU-LIFSHITZ-GILBERT EQUATION
    Brzeźniak, Zdzislaw
    Gokhale, Soham
    Manna, Utpal
    [J]. arXiv, 2023,
  • [3] Stochastic homogenization of the Landau-Lifshitz-Gilbert equation
    Alouges, Francois
    de Bouard, Anne
    Merlet, Benoit
    Nicolas, Lea
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2021, 9 (04): : 789 - 818
  • [4] Numerical methods for the Landau-Lifshitz-Gilbert equation
    Bañas, L
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2005, 3401 : 158 - 165
  • [5] COMPUTATIONAL STUDIES FOR THE STOCHASTIC LANDAU-LIFSHITZ-GILBERT EQUATION
    Banas, Lubomir
    Brzezniak, Zdzislaw
    Prohl, Andreas
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01): : B62 - B81
  • [6] Weak Solutions of a Stochastic Landau-Lifshitz-Gilbert Equation
    Brzezniak, Zdzislaw
    Goldys, Beniamin
    Jegaraj, Terence
    [J]. APPLIED MATHEMATICS RESEARCH EXPRESS, 2013, (01) : 1 - 33
  • [7] Correlation effects in the stochastic Landau-Lifshitz-Gilbert equation
    Bose, Thomas
    Trimper, Steffen
    [J]. PHYSICAL REVIEW B, 2010, 81 (10):
  • [8] Dissipative soliton dynamics of the Landau-Lifshitz-Gilbert equation
    Rothos, V. M.
    Mylonas, I. K.
    Bountis, T.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 215 (02) : 622 - 635
  • [9] Strong solvability of regularized stochastic Landau-Lifshitz-Gilbert equation
    Chugreeva, Olga
    Melcher, Christof
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2018, 83 (02) : 261 - 282
  • [10] Stochastic Landau-Lifshitz-Gilbert equation with delayed feedback field
    Tutu, Hiroki
    Horita, Takehiko
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2008, 120 (02): : 315 - 345