Correlation effects in the stochastic Landau-Lifshitz-Gilbert equation

被引:15
|
作者
Bose, Thomas [1 ]
Trimper, Steffen [1 ]
机构
[1] Univ Halle Wittenberg, Inst Phys, D-06099 Halle, Germany
来源
PHYSICAL REVIEW B | 2010年 / 81卷 / 10期
关键词
SPIN SYSTEM; SOLITONS; DYNAMICS;
D O I
10.1103/PhysRevB.81.104413
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the Landau-Lifshitz-Gilbert equation when the precession motion of the magnetic moments is additionally subjected to an uniaxial anisotropy and is driven by a multiplicative coupled stochastic field with a finite correlation time tau. The mean value for the spin-wave components offers that the spin-wave dispersion relation and its damping is strongly influenced by the deterministic Gilbert damping parameter alpha, the strength of the stochastic forces D and its temporal range tau. The spin-spin-correlation function can be calculated in the low-correlation time limit by deriving an evolution equation for the joint probability function. The stability analysis enables us to find the phase diagram within the alpha-D plane for different values of tau where damped spin-wave solutions are stable. Even for zero deterministic Gilbert damping the magnons offer a finite lifetime. We detect a parameter range where the deterministic and the stochastic damping mechanism are able to compensate each other leading to undamped spin waves. The onset is characterized by a critical value of the correlation time. An enhancement of tau leads to an increase in the oscillations of the correlation function.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] STOCHASTIC CONTROL OF THE LANDAU-LIFSHITZ-GILBERT EQUATION
    Brzeźniak, Zdzislaw
    Gokhale, Soham
    Manna, Utpal
    [J]. arXiv, 2023,
  • [2] Stochastic homogenization of the Landau-Lifshitz-Gilbert equation
    Alouges, Francois
    de Bouard, Anne
    Merlet, Benoit
    Nicolas, Lea
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2021, 9 (04): : 789 - 818
  • [3] COMPUTATIONAL STUDIES FOR THE STOCHASTIC LANDAU-LIFSHITZ-GILBERT EQUATION
    Banas, Lubomir
    Brzezniak, Zdzislaw
    Prohl, Andreas
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01): : B62 - B81
  • [4] Retardation effects in the Landau-Lifshitz-Gilbert equation
    Bose, Thomas
    Trimper, Steffen
    [J]. PHYSICAL REVIEW B, 2011, 83 (13):
  • [5] Weak Solutions of a Stochastic Landau-Lifshitz-Gilbert Equation
    Brzezniak, Zdzislaw
    Goldys, Beniamin
    Jegaraj, Terence
    [J]. APPLIED MATHEMATICS RESEARCH EXPRESS, 2013, (01) : 1 - 33
  • [6] Strong solvability of regularized stochastic Landau-Lifshitz-Gilbert equation
    Chugreeva, Olga
    Melcher, Christof
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2018, 83 (02) : 261 - 282
  • [7] Stochastic Landau-Lifshitz-Gilbert equation with delayed feedback field
    Tutu, Hiroki
    Horita, Takehiko
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2008, 120 (02): : 315 - 345
  • [8] A finite element approximation for the stochastic Landau-Lifshitz-Gilbert equation
    Goldys, Beniamin
    Le, Kim-Ngan
    Thanh Tran
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) : 937 - 970
  • [9] Fractional Landau-Lifshitz-Gilbert equation
    Verstraten, R. C.
    Ludwig, T.
    Duine, R. A.
    Smith, C. Morais
    [J]. PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [10] Numerical methods for the Landau-Lifshitz-Gilbert equation
    Bañas, L
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2005, 3401 : 158 - 165