A finite element approximation for the stochastic Landau-Lifshitz-Gilbert equation

被引:18
|
作者
Goldys, Beniamin [1 ]
Le, Kim-Ngan [2 ]
Thanh Tran [2 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
Stochastic partial differential equation; Landau-Lifshitz-Gilbert equation; Finite element; Ferromagnetism; DISCRETIZATION; CONVERGENCE;
D O I
10.1016/j.jde.2015.09.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The stochastic Landau-Lifshitz-Gilbert (LLG) equation describes the behaviour of the magnetisation under the influence of the effective field containing random fluctuations. We first transform the stochastic LLG equation into a partial differential equation with random coefficients (without the Ito term). The resulting equation has time-differentiable solutions. We then propose a convergent theta-linear scheme for the numerical solution of the reformulated equation. As a consequence, we show the existence of weak martingale solutions to the stochastic LLG equation. A salient feature of this scheme is that it does not involve solving a system of nonlinear algebraic equations, and that no condition on time and space steps is required when theta is an element of (1/2, 1]. Numerical results are presented to show the applicability of the method. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:937 / 970
页数:34
相关论文
共 50 条
  • [1] STOCHASTIC CONTROL OF THE LANDAU-LIFSHITZ-GILBERT EQUATION
    Brzeźniak, Zdzislaw
    Gokhale, Soham
    Manna, Utpal
    [J]. arXiv, 2023,
  • [2] Stochastic homogenization of the Landau-Lifshitz-Gilbert equation
    Alouges, Francois
    de Bouard, Anne
    Merlet, Benoit
    Nicolas, Lea
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2021, 9 (04): : 789 - 818
  • [3] A convergent finite-element-based discretization of the stochastic Landau-Lifshitz-Gilbert equation
    Banas, Lubomir
    Brzezniak, Zdzislaw
    Neklyudov, Mikhail
    Prohl, Andreas
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (02) : 502 - 549
  • [4] Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation
    Bartels, Soren
    Prohl, Andreas
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) : 1405 - 1419
  • [5] An iterative approximation scheme for the Landau-Lifshitz-Gilbert equation
    Cimrák, I
    Slodicka, M
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 169 (01) : 17 - 32
  • [6] COMPUTATIONAL STUDIES FOR THE STOCHASTIC LANDAU-LIFSHITZ-GILBERT EQUATION
    Banas, Lubomir
    Brzezniak, Zdzislaw
    Prohl, Andreas
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01): : B62 - B81
  • [7] Weak Solutions of a Stochastic Landau-Lifshitz-Gilbert Equation
    Brzezniak, Zdzislaw
    Goldys, Beniamin
    Jegaraj, Terence
    [J]. APPLIED MATHEMATICS RESEARCH EXPRESS, 2013, (01) : 1 - 33
  • [8] Correlation effects in the stochastic Landau-Lifshitz-Gilbert equation
    Bose, Thomas
    Trimper, Steffen
    [J]. PHYSICAL REVIEW B, 2010, 81 (10):
  • [9] A framework of the finite element solution of the Landau-Lifshitz-Gilbert equation on tetrahedral meshes
    Yang, Lei
    Chen, Jingrun
    Hu, Guanghui
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 431
  • [10] Finite Time Singularity of the Landau-Lifshitz-Gilbert Equation
    Ding, Shijin
    Wang, Changyou
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007