A framework of the finite element solution of the Landau-Lifshitz-Gilbert equation on tetrahedral meshes

被引:7
|
作者
Yang, Lei [1 ]
Chen, Jingrun [2 ]
Hu, Guanghui [3 ,4 ]
机构
[1] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
[3] Univ Macau, Fac Sci & Technol, Dept Math, Macau, Peoples R China
[4] Zhuhai UM Sci & Technol Res Inst, Zhuhai, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Landau-Lifshitz-Gilbert equation; Implicit midpoint scheme; Finite element method; Demagnetization field calculation; Gradient recovery;
D O I
10.1016/j.jcp.2021.110142
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A framework for the numerical solution of the Landau-Lifshitz-Gilbert equation is developed in this paper. The numerical framework is based on the finite element method on tetrahedral meshes for the spatial discretization and the implicit midpoint scheme for the temporal discretization. The computational complexity for calculating the demagnetization field is effectively reduced by using a PDE approach, in which a gradient recovery technique is used for preserving the numerical accuracy. The numerical convergence of the proposed method is studied in detail for the mu MAG standard problem #3, from which a limit is predicted for the desired side length. The capability of the proposed method on handling problems defined on complex domains is successfully demonstrated by several examples, in which the computational domains are thin films with irregular defects. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A finite element approximation for the stochastic Landau-Lifshitz-Gilbert equation
    Goldys, Beniamin
    Le, Kim-Ngan
    Thanh Tran
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) : 937 - 970
  • [2] Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation
    Bartels, Soren
    Prohl, Andreas
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) : 1405 - 1419
  • [3] Finite Time Singularity of the Landau-Lifshitz-Gilbert Equation
    Ding, Shijin
    Wang, Changyou
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [4] DIRECT SOLUTION OF THE LANDAU-LIFSHITZ-GILBERT EQUATION FOR MICROMAGNETICS
    NAKATANI, Y
    UESAKA, Y
    HAYASHI, N
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1989, 28 (12): : 2485 - 2507
  • [5] A constrained finite element formulation for the Landau-Lifshitz-Gilbert equations
    Szambolics, H.
    Buda-Prejbeanu, L. D.
    Toussaint, J. C.
    Fruchart, O.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2008, 44 (02) : 253 - 258
  • [6] Fractional Landau-Lifshitz-Gilbert equation
    Verstraten, R. C.
    Ludwig, T.
    Duine, R. A.
    Smith, C. Morais
    [J]. PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [7] A convergent finite-element-based discretization of the stochastic Landau-Lifshitz-Gilbert equation
    Banas, Lubomir
    Brzezniak, Zdzislaw
    Neklyudov, Mikhail
    Prohl, Andreas
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (02) : 502 - 549
  • [8] A SPIN-WAVE SOLUTION TO THE LANDAU-LIFSHITZ-GILBERT EQUATION
    Chen, Jingrun
    Sun, Zhiwei
    Wang, Yun
    Yang, Lei
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (01) : 193 - 204
  • [9] STOCHASTIC CONTROL OF THE LANDAU-LIFSHITZ-GILBERT EQUATION
    Brzeźniak, Zdzislaw
    Gokhale, Soham
    Manna, Utpal
    [J]. arXiv, 2023,
  • [10] Stochastic homogenization of the Landau-Lifshitz-Gilbert equation
    Alouges, Francois
    de Bouard, Anne
    Merlet, Benoit
    Nicolas, Lea
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2021, 9 (04): : 789 - 818