Correlation effects in the stochastic Landau-Lifshitz-Gilbert equation

被引:15
|
作者
Bose, Thomas [1 ]
Trimper, Steffen [1 ]
机构
[1] Univ Halle Wittenberg, Inst Phys, D-06099 Halle, Germany
来源
PHYSICAL REVIEW B | 2010年 / 81卷 / 10期
关键词
SPIN SYSTEM; SOLITONS; DYNAMICS;
D O I
10.1103/PhysRevB.81.104413
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the Landau-Lifshitz-Gilbert equation when the precession motion of the magnetic moments is additionally subjected to an uniaxial anisotropy and is driven by a multiplicative coupled stochastic field with a finite correlation time tau. The mean value for the spin-wave components offers that the spin-wave dispersion relation and its damping is strongly influenced by the deterministic Gilbert damping parameter alpha, the strength of the stochastic forces D and its temporal range tau. The spin-spin-correlation function can be calculated in the low-correlation time limit by deriving an evolution equation for the joint probability function. The stability analysis enables us to find the phase diagram within the alpha-D plane for different values of tau where damped spin-wave solutions are stable. Even for zero deterministic Gilbert damping the magnons offer a finite lifetime. We detect a parameter range where the deterministic and the stochastic damping mechanism are able to compensate each other leading to undamped spin waves. The onset is characterized by a critical value of the correlation time. An enhancement of tau leads to an increase in the oscillations of the correlation function.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Stochastic homogenization of the Landau–Lifshitz–Gilbert equation
    François Alouges
    Anne de Bouard
    Benoît Merlet
    Léa Nicolas
    [J]. Stochastics and Partial Differential Equations: Analysis and Computations, 2021, 9 : 789 - 818
  • [42] Regular solutions for multiplicative stochastic Landau-Lifshitz-Gilbert equation and blow-up phenomena
    XueKe Pu
    BoLing Guo
    [J]. Science China Mathematics, 2010, 53 : 3115 - 3130
  • [43] Numerical simulations of critical dynamics in anisotropic magnetic films with the stochastic Landau-Lifshitz-Gilbert equation
    Jin, M. H.
    Zheng, B.
    Xiong, L.
    Zhou, N. J.
    Wang, L.
    [J]. PHYSICAL REVIEW E, 2018, 98 (02)
  • [44] Numerical integration of the stochastic Landau-Lifshitz-Gilbert equation in generic time-discretization schemes
    Roma, Federico
    Cugliandolo, Leticia F.
    Lozano, Gustavo S.
    [J]. PHYSICAL REVIEW E, 2014, 90 (02):
  • [45] Regular solutions for multiplicative stochastic Landau-Lifshitz-Gilbert equation and blow-up phenomena
    Pu XueKe
    Guo BoLing
    [J]. SCIENCE CHINA-MATHEMATICS, 2010, 53 (12) : 3115 - 3130
  • [46] Regular solutions for multiplicative stochastic Landau-Lifshitz-Gilbert equation and blow-up phenomena
    PU XueKe 1
    2 Institute of Applied Physics and Computational Mathematics
    [J]. Science China Mathematics, 2010, 53 (12) : 3115 - 3130
  • [47] Wong-Zakai approximation for the stochastic Landau-Lifshitz-Gilbert equations
    Brzezniak, Zdzislaw
    Manna, Utpal
    Mukherjee, Debopriya
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (02) : 776 - 825
  • [48] Weak-strong uniqueness for the Landau-Lifshitz-Gilbert equation in micromagnetics
    Di Fratta, Giovanni
    Innerberger, Michael
    Praetorius, Dirk
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 55
  • [49] The inviscid limit for the Landau-Lifshitz-Gilbert equation in the critical Besov space
    ZiHua Guo
    ChunYan Huang
    [J]. Science China Mathematics, 2017, 60 : 2155 - 2172
  • [50] Study of type-III intermittency in the Landau-Lifshitz-Gilbert equation
    Bragard, J.
    Velez, J. A.
    Riquelme, J. A.
    Perez, L. M.
    Hernandez-Garcia, R.
    Barrientos, R. J.
    Laroze, D.
    [J]. PHYSICA SCRIPTA, 2021, 96 (12)