Midpoint numerical technique for stochastic Landau-Lifshitz-Gilbert dynamics

被引:56
|
作者
d'Aquino, M [1 ]
Serpico, C
Coppola, G
Mayergoyz, ID
Bertotti, G
机构
[1] Univ Naples Federico II, Dept Elect Engn, I-80125 Naples, Italy
[2] Univ Naples Federico II, DETEC, I-80125 Naples, Italy
[3] Univ Maryland, ECE Dept, College Pk, MD 20742 USA
[4] Univ Maryland, UMIACS, College Pk, MD 20742 USA
[5] Ist Elettrotecn Nazl Galileo Ferraris INRIM, I-10135 Turin, Italy
关键词
D O I
10.1063/1.2169472
中图分类号
O59 [应用物理学];
学科分类号
摘要
The implicit midpoint time-integration technique is applied to the stochastic Landau-Lifshitz-Gilbert (LLG) equation. The numerical scheme converges to the Stratonovich solution in the limit of vanishing time step. It preserves the magnetization magnitude and the main energy balance properties of the LLG equation independently of the time step. The numerical technique is then applied to the study of superparamagnetic state in a small spheroidal particle, and the numerical results are compared with the theory. (C) 2006 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Numerical integration of Landau-Lifshitz-Gilbert equation based on the midpoint rule
    d'Aquino, M
    Serpico, C
    Miano, G
    Mayergoyz, ID
    Bertotti, G
    [J]. JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
  • [2] STOCHASTIC CONTROL OF THE LANDAU-LIFSHITZ-GILBERT EQUATION
    Brzeźniak, Zdzislaw
    Gokhale, Soham
    Manna, Utpal
    [J]. arXiv, 2023,
  • [3] Stochastic homogenization of the Landau-Lifshitz-Gilbert equation
    Alouges, Francois
    de Bouard, Anne
    Merlet, Benoit
    Nicolas, Lea
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2021, 9 (04): : 789 - 818
  • [4] Numerical methods for the Landau-Lifshitz-Gilbert equation
    Bañas, L
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2005, 3401 : 158 - 165
  • [5] Numerical simulations of critical dynamics in anisotropic magnetic films with the stochastic Landau-Lifshitz-Gilbert equation
    Jin, M. H.
    Zheng, B.
    Xiong, L.
    Zhou, N. J.
    Wang, L.
    [J]. PHYSICAL REVIEW E, 2018, 98 (02)
  • [6] Analysis of quasiperiodic Landau-Lifshitz-Gilbert dynamics
    Serpico, C
    d'Aquino, M
    Bertotti, G
    Mayergoyz, ID
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 : 734 - 735
  • [7] COMPUTATIONAL STUDIES FOR THE STOCHASTIC LANDAU-LIFSHITZ-GILBERT EQUATION
    Banas, Lubomir
    Brzezniak, Zdzislaw
    Prohl, Andreas
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01): : B62 - B81
  • [8] Weak Solutions of a Stochastic Landau-Lifshitz-Gilbert Equation
    Brzezniak, Zdzislaw
    Goldys, Beniamin
    Jegaraj, Terence
    [J]. APPLIED MATHEMATICS RESEARCH EXPRESS, 2013, (01) : 1 - 33
  • [9] Correlation effects in the stochastic Landau-Lifshitz-Gilbert equation
    Bose, Thomas
    Trimper, Steffen
    [J]. PHYSICAL REVIEW B, 2010, 81 (10):
  • [10] Dissipative soliton dynamics of the Landau-Lifshitz-Gilbert equation
    Rothos, V. M.
    Mylonas, I. K.
    Bountis, T.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 215 (02) : 622 - 635