Numerical simulations of critical dynamics in anisotropic magnetic films with the stochastic Landau-Lifshitz-Gilbert equation

被引:11
|
作者
Jin, M. H. [1 ,2 ]
Zheng, B. [1 ,2 ]
Xiong, L. [1 ,2 ]
Zhou, N. J. [3 ]
Wang, L. [1 ]
机构
[1] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Hangzhou Normal Univ, Dept Phys, Hangzhou 310036, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
MONTE-CARLO SIMULATIONS; DEPINNING TRANSITION; THERMAL FLUCTUATIONS; CRITICAL-BEHAVIOR; SPIN DYNAMICS; ANTIFERROMAGNET; TEMPERATURE; XY;
D O I
10.1103/PhysRevE.98.022126
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
With the stochastic Landau-Lifshitz-Gilbert (sLLG) equation, critical dynamic behaviors far from equilibrium or stationary around the order-disorder and pinning-depinning phase transitions in anisotropic magnetic films are investigated. From the dynamic relaxation with and without an external field, the Curie temperature and critical exponents of the order-disorder phase transition are accurately determined. For the pinning-depinning phase transition induced by quenched disorder, the nonstationary creep motion of domain wall activated by finite temperatures is simulated, and the thermal rounding exponent is extracted. The results show that the dynamic universality class of the sLLG equation is different from those of the Monte Carlo dynamics and quenched Edwards-Wilkinson equation, and it may lead to alternative understanding of experiments. The dynamic approach shows its great efficiency for the sLLG equation.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Space discretization for the Landau-Lifshitz-Gilbert equation with magnetostriction
    Banas, L
    Slodicka, M
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (2-5) : 467 - 477
  • [32] Dynamics of a Magnetic Needle Magnetometer: Sensitivity to Landau-Lifshitz-Gilbert Damping
    Band, Y. B.
    Avishai, Y.
    Shnirman, Alexander
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (16)
  • [33] On computation of relaxation constant α in Landau-Lifshitz-Gilbert equation
    Gladkov, Serguey
    Bogdanova, Sofiya
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2014, 368 : 324 - 327
  • [34] Generalization of the Landau-Lifshitz-Gilbert Equation for Conducting Ferromagnets
    Zhang, Shufeng
    Zhang, Steven S. -L.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (08)
  • [35] DIRECT SOLUTION OF THE LANDAU-LIFSHITZ-GILBERT EQUATION FOR MICROMAGNETICS
    NAKATANI, Y
    UESAKA, Y
    HAYASHI, N
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1989, 28 (12): : 2485 - 2507
  • [36] An iterative approximation scheme for the Landau-Lifshitz-Gilbert equation
    Cimrák, I
    Slodicka, M
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 169 (01) : 17 - 32
  • [37] Error estimates for Landau-Lifshitz-Gilbert equation with magnetostriction
    Banas, L'ubomir
    Slodicka, Marian
    [J]. APPLIED NUMERICAL MATHEMATICS, 2006, 56 (08) : 1019 - 1039
  • [38] Finite Time Singularity of the Landau-Lifshitz-Gilbert Equation
    Ding, Shijin
    Wang, Changyou
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [39] Nonlinear and chaotic magnetization dynamics near bifurcations of the Landau-Lifshitz-Gilbert equation
    Ferona, Aaron M.
    Camley, Robert E.
    [J]. PHYSICAL REVIEW B, 2017, 95 (10)
  • [40] Vanishing Gilbert damping limit problem of Landau-Lifshitz-Gilbert equation
    Song, Wenjing
    Yang, Ganshan
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (08):