Conformal actions of sln(R) and SLn(R) x Rn on Lorentz manifolds

被引:3
|
作者
Adams, S [1 ]
Stuck, G
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
Lorentz manifolds; isometries; transformation groups;
D O I
10.1090/S0002-9947-00-02439-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that, for n greater than or equal to 3, a locally faithful action of SLn(R) x R-n or of SLn(R) by conformal transformations of a connected Lorentz manifold must be a proper action.
引用
收藏
页码:3913 / 3936
页数:24
相关论文
共 50 条
  • [31] R-ACTIONS, DERIVATIONS, AND FROBENIUS THEOREM ON GRADED MANIFOLDS
    GIACHETTI, R
    RICCI, R
    ADVANCES IN MATHEMATICS, 1986, 62 (01) : 84 - 100
  • [32] HYPERBOLIC R2 ACTIONS ON 2-MANIFOLDS
    SCHNEIDE.CR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 225 - &
  • [33] Compactification de Chabauty de l'espace des sous-groupes de Cartan de SLn(R)
    Haettel, Thomas
    MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (1-2) : 573 - 601
  • [34] Construction of R-matrices for symmetric tensor representations related to Uq ((sln)over-bar)over cap>)
    Bosnjak, Gary
    Mangazeev, Vladimir V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (49)
  • [35] Robustly transitive actions of R2 on compact three manifolds
    Tahzibi, Ali
    Maquera, Carlos
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2007, 38 (02): : 189 - 201
  • [36] MINIMAL GRAPHS IN Hn x R AND Rn+1
    Earp, Ricardo Sa
    Toubiana, Eric
    ANNALES DE L INSTITUT FOURIER, 2010, 60 (07) : 2373 - 2402
  • [37] Eigenvalue estimates for submanifolds in Hadamard manifolds and product manifolds N x R
    Mao, Jing
    Tu, Rongqiang
    Zeng, Kai
    HIROSHIMA MATHEMATICAL JOURNAL, 2020, 50 (01) : 17 - 42
  • [38] Local structural stability of actions of R-n on n-manifolds
    Arraut, J. L.
    Maquera, Carlos
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2006, 24 (1-2): : 9 - 18
  • [39] Compact 3-manifolds supporting some R2-actions
    Maquera, C.
    Huaraca, W. T.
    REAL AND COMPLEX SINGULARITIES, 2012, 569 : 77 - 85
  • [40] ON 4-MANIFOLDS WITH UNIVERSAL COVERING SPACE S(2) X R(2) OR S(3) X R
    HILLMAN, JA
    TOPOLOGY AND ITS APPLICATIONS, 1993, 52 (01) : 23 - 42