Local structural stability of actions of R-n on n-manifolds

被引:0
|
作者
Arraut, J. L. [1 ]
Maquera, Carlos [1 ]
机构
[1] Univ Sao Paulo Sao Carlos, Inst Ciencias Math & Comp, Av Trabalhador Sao Carlense 400, BR-13560970 Sao Carlos, SP, Brazil
来源
基金
巴西圣保罗研究基金会;
关键词
Group action; singular orbit; hyperbolicity; structural stability;
D O I
10.5269/bspm.v24i12.7435
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M-m be a compact m-manifold and phi : R-n x M-m -> M-m a C-r, r >= 1, action with infinitesimal generators of class C-r. We introduce the concept of transversally hyperbolic singular orbit for an action phi and explore this concept in its relations to stability. Our main result says that if m = n and O-p is a compact singular orbit of phi that is transversally hyperbolic, then phi is C-1 locally structurally stable at O-p.
引用
收藏
页码:9 / 18
页数:10
相关论文
共 50 条
  • [1] On the orbit structure of ℝn-actions on n-manifolds
    Arraut J.L.
    Maquera C.
    Qualitative Theory of Dynamical Systems, 2004, 4 (2) : 169 - 180
  • [2] Geometry of nondegenerate Rn-actions on n-manifolds
    Nguyen Tien Zung
    Nguyen Van Minh
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2014, 66 (03) : 839 - 894
  • [3] SEIFERT N-MANIFOLDS
    ORLIK, P
    WAGREICH, P
    INVENTIONES MATHEMATICAE, 1975, 28 (02) : 137 - 159
  • [4] A geometrisation of N-manifolds
    Heuer, M.
    Jotz, M.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 184 : 1 - 70
  • [5] SEIFERT N-MANIFOLDS
    WAGREICH, PD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (06): : A619 - A620
  • [6] IMMERSIONS OF N-MANIFOLDS
    BROWN, EH
    PETERSON, FP
    ADVANCES IN MATHEMATICS, 1977, 24 (01) : 74 - 77
  • [7] SEIFERT N-MANIFOLDS
    ORLIK, PP
    WAGREICH, PD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A399 - A400
  • [8] Some remarks on the topology of hyperbolic actions of Rn on n-manifolds
    Bouloc, Damien
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 121 : 317 - 334
  • [9] On the vertex group of n-manifolds
    Lins, S
    Mulazzani, M
    GEOMETRIAE DEDICATA, 1996, 62 (01) : 53 - 64
  • [10] Spines and embeddings of n-manifolds
    Matveev, S
    Rolfsen, D
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 : 359 - 368