R-ACTIONS, DERIVATIONS, AND FROBENIUS THEOREM ON GRADED MANIFOLDS

被引:7
|
作者
GIACHETTI, R
RICCI, R
机构
[1] IST NAZL FIS NUCL,FIRENZE,ITALY
[2] UNIV FLORENCE,IST MATEMAT U DINI,I-50121 FLORENCE,ITALY
关键词
D O I
10.1016/0001-8708(86)90089-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:84 / 100
页数:17
相关论文
共 38 条
  • [1] A Frobenius theorem on convenient manifolds
    Teichmann, J
    MONATSHEFTE FUR MATHEMATIK, 2001, 134 (02): : 159 - 167
  • [2] A Frobenius Theorem on Convenient Manifolds
    Josef Teichmann
    Monatshefte für Mathematik, 2001, 134 : 159 - 167
  • [3] ON PROPER R-ACTIONS ON HYPERBOLIC STEIN SURFACES
    Miebach, Christian
    Oeljeklaus, Karl
    DOCUMENTA MATHEMATICA, 2009, 14 : 673 - 689
  • [4] Generalizations of Frobenius' theorem on manifolds and subcartesian spaces
    Sniatycki, Jedrzej
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2007, 50 (03): : 447 - 459
  • [5] Formality theorem for differential graded manifolds
    Liao, Hsuan-Yi
    Stienon, Mathieu
    Xu, Ping
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (01) : 27 - 43
  • [6] AN INDEPENDENCE THEOREM FOR LAGRANGIAN SYSTEMS ON GRADED MANIFOLDS
    BARDUCCI, A
    GIACHETTI, R
    SORACE, E
    LETTERS IN MATHEMATICAL PHYSICS, 1984, 8 (02) : 105 - 109
  • [7] Global rigidity of smooth Z (sic)λ R-actions on T2
    Dong, Changguang
    Shi, Yi
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2025, 45 (04) : 1161 - 1176
  • [8] EXTENDED JACOBSON DENSITY THEOREM FOR GRADED RINGS WITH DERIVATIONS AND AUTOMORPHISMS
    Chen, Tung-Shyan
    Huang, Chiu-Fang
    Liang, Jing-Whei
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (05): : 1993 - 2014
  • [9] A convexity theorem for torus actions on contact manifolds
    Lerman, E
    ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (01) : 171 - 184
  • [10] Actions of (R,+) and (C,+) on complex manifolds
    Forstneric, F
    MATHEMATISCHE ZEITSCHRIFT, 1996, 223 (01) : 123 - 153