A convexity theorem for torus actions on contact manifolds

被引:13
|
作者
Lerman, E [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.1215/ijm/1258136148
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the image cone of a moment map for an action of a torus on a contact compact connected manifold is a convex polyhedral cone and that the moment map has connected fibers provided the dimension of the torus is bigger than 2 and that no orbit is tangent to the contact distribution. This may be considered as a version of the Atiyah-Guillemin-Sternberg convexity theorem for torus actions on symplectic cones and as a direct generalization of the convexity theorem of Banyaga and Molino for completely integrable torus actions on contact manifolds.
引用
收藏
页码:171 / 184
页数:14
相关论文
共 50 条
  • [1] ALGEBRAIC TORUS ACTIONS ON CONTACT MANIFOLDS
    Buczynski, Jaroslaw
    Wisniewski, Jaroslaw A.
    Weber, Andrzej
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2022, 121 (02) : 227 - 289
  • [2] Convexity for Hamiltonian torus actions on b-symplectic manifolds
    Guillemin, Victor
    Miranda, Eva
    Pires, Ana Rita
    Scott, Geoffrey
    MATHEMATICAL RESEARCH LETTERS, 2017, 24 (02) : 363 - 377
  • [3] High rank torus actions on contact manifolds
    Gianluca Occhetta
    Eleonora A. Romano
    Luis E. Solá Conde
    Jarosław A. Wiśniewski
    Selecta Mathematica, 2021, 27
  • [4] High rank torus actions on contact manifolds
    Occhetta, Gianluca
    Romano, Eleonora A.
    Conde, Luis E. Sola
    Wisniewski, Jaroslaw A.
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (01):
  • [5] Convexity of the moment map image for torus actions on bm-symplectic manifolds
    Guillemin, Victor W.
    Miranda, Eva
    Weitsman, Jonathan
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2131):
  • [6] A convexity theorem for three tangled Hamiltonian torus actions, and super-integrable systems
    Abe, Hiraku
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (05) : 577 - 593
  • [7] Complex manifolds with maximal torus actions
    Ishida, Hiroaki
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 751 : 121 - 184
  • [8] Torus and Z/p actions on manifolds
    Sikora, AS
    TOPOLOGY, 2004, 43 (03) : 725 - 748
  • [9] Torus actions on rationally elliptic manifolds
    F. Galaz-García
    M. Kerin
    M. Radeschi
    Mathematische Zeitschrift, 2021, 297 : 197 - 221
  • [10] Torus actions on rationally elliptic manifolds
    Galaz-Garcia, F.
    Kerin, M.
    Radeschi, M.
    MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (1-2) : 197 - 221