The One-Mode Quantum-Limited Gaussian Attenuator and Amplifier Have GaussianMaximizers

被引:6
|
作者
De Palma, Giacomo [1 ,2 ,3 ,4 ]
Trevisan, Dario [5 ]
Giovannetti, Vittorio [2 ,3 ]
机构
[1] Univ Copenhagen, Dept Math Sci, QMATH, Univ Pk 5, DK-2100 Copenhagen, Denmark
[2] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[3] CNR, Ist Nanosci, I-56126 Pisa, Italy
[4] INFN, Pisa, Italy
[5] Univ Pisa, I-56126 Pisa, Italy
来源
ANNALES HENRI POINCARE | 2018年 / 19卷 / 10期
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
ENTROPY POWER INEQUALITY; PASSIVE STATES; INFORMATION; SYSTEMS; CONJECTURE; PROOF; ADDITIVITY; CHANNELS; NUMBERS; NORMS;
D O I
10.1007/s00023-018-0703-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We determine the p. q norms of the Gaussian one-mode quantum-limited attenuator and amplifier and prove that they are achieved by Gaussian states, extending to noncommutative probability the seminal theorem " Gaussian kernels have only Gaussian maximizers" (Lieb in Invent Math 102(1): 179-208, 1990). The quantum-limited attenuator and amplifier are the building blocks of quantum Gaussian channels, which play a key role in quantum communication theory since they model in the quantum regime the attenuation and the noise affecting any electromagnetic signal. Our result is crucial to prove the longstanding conjecture stating that Gaussian input states minimize the output entropy of one-mode phase-covariant quantum Gaussian channels for fixed input entropy. Our proof technique is based on a new noncommutative logarithmic Sobolev inequality, and it can be used to determine the p. q norms of any quantum semigroup.
引用
收藏
页码:2919 / 2953
页数:35
相关论文
共 50 条
  • [41] The quantum-limited comb lineshape of a mode-locked laser: Fundamental limits on frequency uncertainty
    Wahlstrand, J. K.
    Willits, J. T.
    Menyuk, C. R.
    Cundiff, S. T.
    OPTICS EXPRESS, 2008, 16 (23) : 18624 - 18630
  • [42] Segal-Bargmann transforms of one-mode interacting Fock spaces associated with Gaussian and Poisson measures
    Asai, N
    Kubo, I
    Kuo, HH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (03) : 815 - 823
  • [43] Phase-Regeneration of 2ASK-BPSK in a One-Mode Phase-Sensitive Amplifier
    Richter, Thomas
    Elschner, Robert
    Schubert, Colja
    2013 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES, 2013, : 157 - 158
  • [44] Generalized minimal output entropy conjecture for one-mode Gaussian channels: definitions and some exact results
    Giovannetti, V.
    Holevo, A. S.
    Lloyd, S.
    Maccone, L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (41)
  • [45] Quantum-limited time-frequency multiparameter estimation through mode-selective photon measurement
    Ansari, Vahid
    Donohue, John M.
    Lopez, Jano G.
    Rehacek, Jaroslav
    Hradil, Zdenek
    Stoklasa, Bohumil
    Paur, Martin
    Brecht, Benjamin
    Sanchez-Soto, Luis L.
    Silberhorn, Christine
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [46] Characterization of a flux-driven Josephson parametric amplifier with near quantum-limited added noise for axion search experiments
    Kutlu, Caglar
    van Loo, Arjan F.
    Uchaikin, Sergey, V
    Matlashov, Andrei N.
    Lee, Doyu
    Oh, Seonjeong
    Kim, Jinsu
    Chung, Woohyun
    Nakamura, Yasunobu
    Semertzidis, Yannis K.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2021, 34 (08):
  • [47] Quantum phase transitions of three-level atoms interacting with a one-mode electromagnetic field
    Cordero, S.
    Lopez-Pena, R.
    Castanos, O.
    Nahmad-Achar, E.
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [48] Three-wave-mixing quantum-limited kinetic inductance parametric amplifier operating at 6 T near 1 K
    Frasca, S.
    Roy, C.
    Beaulieu, G.
    Scarlino, P.
    PHYSICAL REVIEW APPLIED, 2024, 21 (02)
  • [49] Two-level system in a one-mode quantum field: Numerical solution on the basis of the operator method
    Feranchuk, ID
    Komarov, LI
    Ulyanenkov, AP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (14): : 4035 - 4047
  • [50] QUANTUM FLUCTUATIONS IN APHI4 FIELD-THEORY .2. ONE-MODE APPROXIMATION
    CHANG, SJ
    WRIGHT, JA
    PHYSICAL REVIEW D, 1975, 12 (06): : 1595 - 1605