The One-Mode Quantum-Limited Gaussian Attenuator and Amplifier Have GaussianMaximizers

被引:6
|
作者
De Palma, Giacomo [1 ,2 ,3 ,4 ]
Trevisan, Dario [5 ]
Giovannetti, Vittorio [2 ,3 ]
机构
[1] Univ Copenhagen, Dept Math Sci, QMATH, Univ Pk 5, DK-2100 Copenhagen, Denmark
[2] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[3] CNR, Ist Nanosci, I-56126 Pisa, Italy
[4] INFN, Pisa, Italy
[5] Univ Pisa, I-56126 Pisa, Italy
来源
ANNALES HENRI POINCARE | 2018年 / 19卷 / 10期
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
ENTROPY POWER INEQUALITY; PASSIVE STATES; INFORMATION; SYSTEMS; CONJECTURE; PROOF; ADDITIVITY; CHANNELS; NUMBERS; NORMS;
D O I
10.1007/s00023-018-0703-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We determine the p. q norms of the Gaussian one-mode quantum-limited attenuator and amplifier and prove that they are achieved by Gaussian states, extending to noncommutative probability the seminal theorem " Gaussian kernels have only Gaussian maximizers" (Lieb in Invent Math 102(1): 179-208, 1990). The quantum-limited attenuator and amplifier are the building blocks of quantum Gaussian channels, which play a key role in quantum communication theory since they model in the quantum regime the attenuation and the noise affecting any electromagnetic signal. Our result is crucial to prove the longstanding conjecture stating that Gaussian input states minimize the output entropy of one-mode phase-covariant quantum Gaussian channels for fixed input entropy. Our proof technique is based on a new noncommutative logarithmic Sobolev inequality, and it can be used to determine the p. q norms of any quantum semigroup.
引用
收藏
页码:2919 / 2953
页数:35
相关论文
共 50 条
  • [31] QUANTUM-THEORY OF THE ONE-MODE LAMBDA-TYPE MICROMASER AND LASER
    LEKIEN, F
    MEYER, GM
    SCULLY, MO
    WALTHER, H
    PHYSICAL REVIEW A, 1995, 51 (02): : 1644 - 1649
  • [32] Light-efficient, quantum-limited interferometric wavefront estimation by virtual mode sensing
    Lauterbach, MA
    Ruckel, M
    Denk, W
    OPTICS EXPRESS, 2006, 14 (09): : 3700 - 3714
  • [33] Calculation of the quantum-limited comb lineshape for a mode-locked Ti:sapphire laser
    Willits, John T.
    Wahlstrand, Jared K.
    Cundiff, Steven T.
    Menyuk, Curtis R.
    2008 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM, VOLS 1 AND 2, 2008, : 455 - +
  • [34] Quantum-limited transmission distance of optically repeating systems using a hybrid EDFA/Raman-amplifier
    Inoue, Kyo
    OPTICS LETTERS, 2024, 49 (19) : 5360 - 5362
  • [35] Observation of quantum-limited timing jitter in an active, harmonically mode-locked fiber laser
    Grein, ME
    Jiang, LA
    Haus, HA
    Ippen, EP
    McNeilage, C
    Searls, JH
    Windeler, RS
    OPTICS LETTERS, 2002, 27 (11) : 957 - 959
  • [36] Complete characterization of quantum-limited timing jitter in passively mode-locked fiber lasers
    Cox, Jonathan A.
    Nejadmalayeri, Amir H.
    Kim, Jungwon
    Kaertner, Franz X.
    OPTICS LETTERS, 2010, 35 (20) : 3522 - 3524
  • [37] Quantum-limited timing jitter characterization of mode-locked lasers by asynchronous optical sampling
    Shi, Haosen
    Song, Youjian
    Yu, Jiahe
    Li, Runmin
    Hu, Minglie
    Wang, Chinhyue
    OPTICS EXPRESS, 2017, 25 (01): : 10 - 19
  • [38] Quantum-Limited Time-Frequency Estimation through Mode-Selective Photon Measurement
    Donohue, J. M.
    Ansari, V.
    Rehacek, J.
    Hradil, Z.
    Stoklasa, B.
    Paur, M.
    Sanchez-Soto, L. L.
    Silberhorn, C.
    PHYSICAL REVIEW LETTERS, 2018, 121 (09)
  • [39] NEARLY QUANTUM-LIMITED TIMING JITTER IN A SELF-MODE-LOCKED TI SAPPHIRE LASER
    SPENCE, DE
    DUDLEY, JM
    LAMB, K
    SLEAT, WE
    SIBBETT, W
    OPTICS LETTERS, 1994, 19 (07) : 481 - 483
  • [40] Large gain quantum-limited qubit measurement using a two-mode nonlinear cavity
    Khan, S.
    Vijay, R.
    Siddiqi, I.
    Clerk, A. A.
    NEW JOURNAL OF PHYSICS, 2014, 16