The One-Mode Quantum-Limited Gaussian Attenuator and Amplifier Have GaussianMaximizers

被引:6
|
作者
De Palma, Giacomo [1 ,2 ,3 ,4 ]
Trevisan, Dario [5 ]
Giovannetti, Vittorio [2 ,3 ]
机构
[1] Univ Copenhagen, Dept Math Sci, QMATH, Univ Pk 5, DK-2100 Copenhagen, Denmark
[2] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[3] CNR, Ist Nanosci, I-56126 Pisa, Italy
[4] INFN, Pisa, Italy
[5] Univ Pisa, I-56126 Pisa, Italy
来源
ANNALES HENRI POINCARE | 2018年 / 19卷 / 10期
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
ENTROPY POWER INEQUALITY; PASSIVE STATES; INFORMATION; SYSTEMS; CONJECTURE; PROOF; ADDITIVITY; CHANNELS; NUMBERS; NORMS;
D O I
10.1007/s00023-018-0703-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We determine the p. q norms of the Gaussian one-mode quantum-limited attenuator and amplifier and prove that they are achieved by Gaussian states, extending to noncommutative probability the seminal theorem " Gaussian kernels have only Gaussian maximizers" (Lieb in Invent Math 102(1): 179-208, 1990). The quantum-limited attenuator and amplifier are the building blocks of quantum Gaussian channels, which play a key role in quantum communication theory since they model in the quantum regime the attenuation and the noise affecting any electromagnetic signal. Our result is crucial to prove the longstanding conjecture stating that Gaussian input states minimize the output entropy of one-mode phase-covariant quantum Gaussian channels for fixed input entropy. Our proof technique is based on a new noncommutative logarithmic Sobolev inequality, and it can be used to determine the p. q norms of any quantum semigroup.
引用
收藏
页码:2919 / 2953
页数:35
相关论文
共 50 条
  • [21] Transmon qubit readout fidelity at the threshold for quantum error correction without a quantum-limited amplifier
    Liangyu Chen
    Hang-Xi Li
    Yong Lu
    Christopher W. Warren
    Christian J. Križan
    Sandoko Kosen
    Marcus Rommel
    Shahnawaz Ahmed
    Amr Osman
    Janka Biznárová
    Anita Fadavi Roudsari
    Benjamin Lienhard
    Marco Caputo
    Kestutis Grigoras
    Leif Grönberg
    Joonas Govenius
    Anton Frisk Kockum
    Per Delsing
    Jonas Bylander
    Giovanna Tancredi
    npj Quantum Information, 9
  • [22] Quantum-limited noise performance of a mode-locked laser diode
    Jiang, LA
    Grein, ME
    Ippen, EP
    McNeilage, C
    Searls, J
    Yokoyama, H
    OPTICS LETTERS, 2002, 27 (01) : 49 - 51
  • [23] SPECTRA OF WEAK FLUCTUATIONS IN STATIONARY ONE-MODE PLASMA-BEAM AMPLIFIER
    AIZATSKIJ, NI
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1980, 23 (11): : 1380 - 1382
  • [24] ENTANGLEMENT OF TWO QUBITS INTERACTING WITH ONE-MODE QUANTUM FIELD
    Bashkirov, E. K.
    Mastyugin, M. S.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2015, 19 (02): : 205 - 220
  • [25] One-mode bosonic Gaussian channels: a full weak-degradability classification
    Caruso, F.
    Giovannetti, V.
    Holevo, A. S.
    NEW JOURNAL OF PHYSICS, 2006, 8
  • [26] Approaching Quantum-Limited Amplification with Large Gain Catalyzed by Optical Parametric Amplifier Medium
    郑强
    李凯
    CommunicationsinTheoreticalPhysics, 2017, 68 (07) : 76 - 82
  • [27] Approaching Quantum-Limited Amplification with Large Gain Catalyzed by Optical Parametric Amplifier Medium
    Zheng, Qiang
    Li, Kai
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2017, 68 (01) : 76 - 82
  • [28] The quantum-limited comb lineshape for a mode-locked Ti:sapphire laser
    Willits, J.
    Wahlstrand, J. K.
    Menyuk, C. R.
    Cundiff, S. T.
    2008 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS DIGEST, 2008, : 170 - +
  • [29] PHOTON DISTRIBUTION FOR ONE-MODE MIXED LIGHT WITH A GENERIC GAUSSIAN WIGNER FUNCTION
    DODONOV, VV
    MANKO, OV
    MANKO, VI
    PHYSICAL REVIEW A, 1994, 49 (04): : 2993 - 3001
  • [30] ORDERED MOMENTS IN THE CASE OF A ONE-MODE RADIATION-FIELD WITH GAUSSIAN WIGNER FUNCTIONS
    ADAM, G
    PHYSICS LETTERS A, 1992, 171 (1-2) : 66 - 70