NEW BERRY-ESSEEN BOUNDS FOR FUNCTIONALS OF BINOMIAL POINT PROCESSES

被引:24
|
作者
Lachieze-Rey, Raphael [1 ]
Peccati, Giovanni [2 ]
机构
[1] Univ Paris 05, Sorbonne Paris Cite, Lab Map5, 45 Rue St Peres, F-75006 Paris, France
[2] Univ Luxembourg, Math Res Unit, Maison Nombre 6,Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
来源
ANNALS OF APPLIED PROBABILITY | 2017年 / 27卷 / 04期
关键词
Berry-Esseen bounds; binomial processes; covering processes; random tessellations; stochastic geometry; Stein's method; NORMAL APPROXIMATION; STATISTICS; DECOMPOSITIONS;
D O I
10.1214/16-AAP1218
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain explicit Berry-Esseen bounds in the Kolmogorov distance for the normal approximation of nonlinear functionals of vectors of independent random variables. Our results are based on the use of Stein's method and of random difference operators, and generalise the bounds obtained by Chatter-jee (2008), concerning normal approximations in the Wasserstein distance. In order to obtain lower bounds for variances, we also revisit the classical Hoeffding decompositions, for which we provide a new proof and a new representation. Several applications are discussed in detail: in particular, new Berry-Esseen bounds are obtained for set approximations with random tessellations, as well as for functionals of coverage processes.
引用
收藏
页码:1992 / 2031
页数:40
相关论文
共 50 条
  • [1] BERRY-ESSEEN BOUNDS FOR FUNCTIONALS OF U-STATISTICS
    GHOSH, M
    [J]. SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1985, 47 (JUN): : 255 - 270
  • [2] Berry-Esseen bounds for functionals of independent random variables
    Privault, Nicolas
    Serafin, Grzegorz
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [3] VECTOR-VALUED STATISTICS OF BINOMIAL PROCESSES: BERRY-ESSEEN BOUNDS IN THE CONVEX DISTANCE
    Kasprzak, Mikolaj J.
    Peccati, Giovanni
    [J]. ANNALS OF APPLIED PROBABILITY, 2023, 33 (05): : 3449 - 3492
  • [4] Berry-Esseen bounds for kernel estimates of stationary processes
    Huang, Chu
    Wang, Hanchao
    Zhang, Lixin
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (03) : 1290 - 1296
  • [5] Berry-Esseen bounds and multivariate limit theorems for functionals of Rademacher sequences
    Krokowski, Kai
    Reichenbachs, Anselm
    Thale, Christoph
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (02): : 763 - 803
  • [6] New Berry-Esseen bounds for non-linear functionals of Poisson random measures
    Eichelsbacher, Peter
    Thaele, Christoph
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 25
  • [7] Sufficient Condition on Optimal Berry-Esseen Bounds of Functionals of Gaussian Fields
    Kim, Yoon Tae
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2013, 20 (01) : 15 - 22
  • [8] Berry-Esseen bounds for parameter estimation of general Gaussian processes
    Douissi, Soukaina
    Es-Sebaiy, Khalifa
    Viens, Frederi G.
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 16 (01): : 633 - 664
  • [9] On Berry-Esseen bounds of summability transforms
    Fridy, JA
    Goonatilake, RA
    Khan, MK
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) : 273 - 282
  • [10] Berry-Esseen Bounds and Diophantine Approximation
    Berkes, I.
    Borda, B.
    [J]. ANALYSIS MATHEMATICA, 2018, 44 (02) : 149 - 161