Berry-Esseen bounds for parameter estimation of general Gaussian processes

被引:17
|
作者
Douissi, Soukaina [1 ]
Es-Sebaiy, Khalifa [2 ]
Viens, Frederi G. [3 ]
机构
[1] Univ Cadi Ayyad, Fac Sci Semlalia, Blvd Abdelkrim Al Khattabi, Marrakech 40000, Morocco
[2] Kuwait Univ, Fac Sci, Dept Math, Kuwait, Kuwait
[3] Michigan State Univ, Dept Stat & Probabil, 619 Red Cedar Rd, E Lansing, MI 48824 USA
关键词
Central limit theorem; Berry-Esseen; Nourdin-Peccati analysis; parameter estimation; fractional Brownian motion; long memory; ORNSTEIN-UHLENBECK PROCESS; INEQUALITY;
D O I
10.30757/ALEA.v16-23
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study rates of convergence in central limit theorems for the partial sum of squares of general Gaussian sequences, using tools from analysis on Wiener space. No assumption of stationarity, asymptotically or otherwise, is made. The main theoretical tool is the so-called Optimal Fourth Moment Theorem (Nourdin and Peccati, 2015), which provides a sharp quantitative estimate of the total variation distance on Wiener chaos to the normal law. The only assumptions made on the sequence are the existence of an asymptotic variance, that a least-squares-type estimator for this variance parameter has a bias and a variance which can be controlled, and that the sequence's auto-correlation function, which may exhibit long memory, has a no-worse memory than that of fractional Brownian motion with Hurst parameter H < 3/4. Our main result is explicit, exhibiting the trade-off between bias, variance, and memory. We apply our result to study drift parameter estimation problems for subfractional Ornstein-Uhlenbeck and bifractional Ornstein-Uhlenbeck processes with fixed-time-step observations. These are processes which fail to be stationary or self-similar, but for which detailed calculations result in explicit formulas for the estimators' asymptotic normality.
引用
收藏
页码:633 / 664
页数:32
相关论文
共 50 条
  • [1] Berry-Esseen bounds for kernel estimates of stationary processes
    Huang, Chu
    Wang, Hanchao
    Zhang, Lixin
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (03) : 1290 - 1296
  • [2] Berry-Esseen bounds of second moment estimators for Gaussian processes observed at high frequency
    Douissi, Soukaina
    Es-Sebaiy, Khalifa
    Kerchev, George
    Nourdin, Ivan
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 636 - 670
  • [3] Berry-Esseen bound for the parameter estimation of fractional Ornstein-Uhlenbeck processes
    Chen, Yong
    Kuang, Nenghui
    Li, Ying
    [J]. STOCHASTICS AND DYNAMICS, 2020, 20 (04)
  • [4] NEW BERRY-ESSEEN BOUNDS FOR FUNCTIONALS OF BINOMIAL POINT PROCESSES
    Lachieze-Rey, Raphael
    Peccati, Giovanni
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 1992 - 2031
  • [5] On Berry-Esseen bounds of summability transforms
    Fridy, JA
    Goonatilake, RA
    Khan, MK
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) : 273 - 282
  • [6] Berry-Esseen Bounds and Diophantine Approximation
    Berkes, I.
    Borda, B.
    [J]. ANALYSIS MATHEMATICA, 2018, 44 (02) : 149 - 161
  • [7] Sufficient Condition on Optimal Berry-Esseen Bounds of Functionals of Gaussian Fields
    Kim, Yoon Tae
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2013, 20 (01) : 15 - 22
  • [8] A NOTE ON THE BERRY-ESSEEN BOUNDS FOR ρ-MIXING
    Lu, C.
    Yu, W.
    Ji, R. L.
    Zhou, H. L.
    Wang, X. J.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2022, 67 (03) : 415 - 433
  • [9] Berry-Esseen bounds for estimating undirected graphs
    Wasserman, Larry
    Kolar, Mladen
    Rinaldo, Alessandro
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 1188 - 1224
  • [10] On Berry-Esseen bounds for non-instantaneous filters of linear processes
    Cheng, Tsung-Lin
    Ho, Hwai-Chung
    [J]. BERNOULLI, 2008, 14 (02) : 301 - 321