Berry-Esseen bounds of second moment estimators for Gaussian processes observed at high frequency

被引:5
|
作者
Douissi, Soukaina [1 ]
Es-Sebaiy, Khalifa [2 ]
Kerchev, George [3 ]
Nourdin, Ivan [3 ]
机构
[1] Natl Sch Appl Sci, Marrakech, Morocco
[2] Kuwait Univ, Fac Sci, Dept Math, Kuwait, Kuwait
[3] Univ Luxembourg, Dept Math, Luxembourg, Luxembourg
来源
ELECTRONIC JOURNAL OF STATISTICS | 2022年 / 16卷 / 01期
关键词
Parameter estimation; strong consistency; rate of normal convergence of the estimators; stationary Gaussian processes; continuous-time observation; high frequency data; PARAMETER-ESTIMATION;
D O I
10.1214/21-EJS1967
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let Z := {Z(t) ,t >= 0} be a stationary Gaussian process. We study two estimators of E[Z(0)(2)], namely (f) over cap (T)(Z) := 1/T integral(T)(0) Z(t)(2)dt, and (f) over tilde (n) (Z) := 1/n Sigma(n)(i=1) Z(ti)(2), where t(i) = i Delta(n), i = 0, 1, ..., n, Delta -> 0 and T-n := n Delta(n) -> infinity. We prove that the two estimators are strongly consistent and establish Berry-Esseen bounds for a central limit theorem involving (f) over cap (T)(Z) and (f) over tilde (n)(Z). We apply these results to asymptotically stationary Gaussian processes and estimate the drift parameter for Gaussian Ornstein-Uhlenbeck processes.
引用
收藏
页码:636 / 670
页数:35
相关论文
共 50 条
  • [1] Berry-Esseen bounds for parameter estimation of general Gaussian processes
    Douissi, Soukaina
    Es-Sebaiy, Khalifa
    Viens, Frederi G.
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 16 (01): : 633 - 664
  • [2] Berry-Esseen Bounds of the Quasi Maximum Likelihood Estimators for the Discretely Observed Diffusions
    Bishwal, Jaya P. N.
    [J]. APPLIEDMATH, 2022, 2 (01): : 39 - 53
  • [3] Berry-Esseen bounds for the percentile residual life function estimators
    Zhao, Mu
    Jiang, Hongmei
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 104 : 133 - 140
  • [4] Berry-Esseen bounds for kernel estimates of stationary processes
    Huang, Chu
    Wang, Hanchao
    Zhang, Lixin
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (03) : 1290 - 1296
  • [5] ON BERRY-ESSEEN RATES FOR JACKKNIFE ESTIMATORS
    CHENG, KF
    [J]. ANNALS OF STATISTICS, 1981, 9 (03): : 694 - 696
  • [6] NEW BERRY-ESSEEN BOUNDS FOR FUNCTIONALS OF BINOMIAL POINT PROCESSES
    Lachieze-Rey, Raphael
    Peccati, Giovanni
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 1992 - 2031
  • [7] On Berry-Esseen bounds of summability transforms
    Fridy, JA
    Goonatilake, RA
    Khan, MK
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) : 273 - 282
  • [8] Berry-Esseen Bounds and Diophantine Approximation
    Berkes, I.
    Borda, B.
    [J]. ANALYSIS MATHEMATICA, 2018, 44 (02) : 149 - 161
  • [9] Sufficient Condition on Optimal Berry-Esseen Bounds of Functionals of Gaussian Fields
    Kim, Yoon Tae
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2013, 20 (01) : 15 - 22
  • [10] Berry-Esseen type bounds of estimators in a semiparametric model with linear process errors
    Liang, Han-Ying
    Fan, Guo-Liang
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (01) : 1 - 15