Berry-Esseen bounds and multivariate limit theorems for functionals of Rademacher sequences

被引:16
|
作者
Krokowski, Kai [1 ]
Reichenbachs, Anselm [1 ]
Thale, Christoph [1 ]
机构
[1] Ruhr Univ Bochum, Fac Math, Bochum, Germany
关键词
Berry-Esseen bound; Central limit theorem; Malliavin calculus; Normal approximation; Rademacher chaos; Stein's method; GAUSSIAN FLUCTUATIONS; NORMAL APPROXIMATION; U-STATISTICS; POISSON; INVARIANCE;
D O I
10.1214/14-AIHP652
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Berry-Esseen bounds for non-linear functionals of infinite Rademacher sequences are derived by means of the Malliavin-Stein method. Moreover, multivariate extensions for vectors of Rademacher functionals are shown. The results establish a connection to small ball probabilities and shed new light onto the relation between central limit theorems on the Rademacher chaos and norms of contraction operators. Applications concern infinite weighted 2-runs, a combinatorial central limit theorem and traces of Bernoulli random matrices.
引用
收藏
页码:763 / 803
页数:41
相关论文
共 50 条
  • [1] BERRY-ESSEEN BOUNDS FOR FUNCTIONALS OF U-STATISTICS
    GHOSH, M
    [J]. SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1985, 47 (JUN): : 255 - 270
  • [2] Berry-Esseen bounds for functionals of independent random variables
    Privault, Nicolas
    Serafin, Grzegorz
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [3] Berry-Esseen Bounds with Targets and Local Limit Theorems for Products of Random Matrices
    Dinh, Tien-Cuong
    Kaufmann, Lucas
    Wu, Hao
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (03)
  • [4] Berry-Esseen bounds in the entropic central limit theorem
    Bobkov, Sergey G.
    Chistyakov, Gennadiy P.
    Goetze, Friedrich
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2014, 159 (3-4) : 435 - 478
  • [5] NEW BERRY-ESSEEN BOUNDS FOR FUNCTIONALS OF BINOMIAL POINT PROCESSES
    Lachieze-Rey, Raphael
    Peccati, Giovanni
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 1992 - 2031
  • [6] Sufficient Condition on Optimal Berry-Esseen Bounds of Functionals of Gaussian Fields
    Kim, Yoon Tae
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2013, 20 (01) : 15 - 22
  • [7] Multivariate central limit theorems for Rademacher functionals with applications
    Krokowski, Kai
    Thaele, Christoph
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [8] On Berry-Esseen bounds of summability transforms
    Fridy, JA
    Goonatilake, RA
    Khan, MK
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) : 273 - 282
  • [9] Berry-Esseen bounds for combinatorial central limit theorems and pattern occurrences, using zero and size biasing
    Goldstein, L
    [J]. JOURNAL OF APPLIED PROBABILITY, 2005, 42 (03) : 661 - 683
  • [10] Berry-Esseen Bounds and Diophantine Approximation
    Berkes, I.
    Borda, B.
    [J]. ANALYSIS MATHEMATICA, 2018, 44 (02) : 149 - 161