New Berry-Esseen bounds for non-linear functionals of Poisson random measures

被引:27
|
作者
Eichelsbacher, Peter [1 ]
Thaele, Christoph [1 ]
机构
[1] Ruhr Univ Bochum, Bochum, Germany
来源
关键词
Berry-Esseen bound; central limit theorem; de Jong's theorem; flat processes; Malliavin calculus; multiple stochastic integral; Ornstein-Uhlenbeck-Levy process; Poisson process; random graphs; random measure; Skorohod isometric formula; Stein's method; U-statistics; CENTRAL LIMIT-THEOREMS; UNIVERSAL GAUSSIAN FLUCTUATIONS; U-STATISTICS; ASYMPTOTICS;
D O I
10.1214/EJP.v19-3061
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper deals with the quantitative normal approximation of non-linear functionals of Poisson random measures, where the quality is measured by the Kolmogorov distance. Combining Stein's method with the Malliavin calculus of variations on the Poisson space, we derive a bound, which is strictly smaller than what is available in the literature. This is applied to sequences of multiple integrals and sequences of Poisson functionals having a finite chaotic expansion. This leads to new Berry-Esseen bounds in a Poissonized version of de Jong's theorem for degenerate U-statistics. Moreover, geometric functionals of intersection processes of Poisson k-flats, random graph statistics of the Boolean model and non-linear functionals of Ornstein-Uhlenbeck-Levy processes are considered.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [1] Berry-Esseen bounds for functionals of independent random variables
    Privault, Nicolas
    Serafin, Grzegorz
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [2] NEW BERRY-ESSEEN BOUNDS FOR FUNCTIONALS OF BINOMIAL POINT PROCESSES
    Lachieze-Rey, Raphael
    Peccati, Giovanni
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 1992 - 2031
  • [3] BERRY-ESSEEN BOUNDS FOR FUNCTIONALS OF U-STATISTICS
    GHOSH, M
    [J]. SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1985, 47 (JUN): : 255 - 270
  • [4] Anticoncentration and Berry-Esseen bounds for random tensors
    Dodos, Pandelis
    Tyros, Konstantinos
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2023, 187 (1-2) : 317 - 384
  • [5] BERRY-ESSEEN BOUNDS FOR (ABSOLUTE) MOMENTS OF DOMINATED MEASURES
    LANDERS, D
    ROGGE, L
    [J]. JOURNAL OF APPROXIMATION THEORY, 1988, 54 (03) : 250 - 259
  • [6] Berry-Esseen Bounds for Random Index Non Linear Statistics via Stein's Method
    Tuntapthai, Mongkhon
    Chaidee, Nattakarn
    Neammanee, Kritsana
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (16) : 3464 - 3485
  • [7] Berry-Esseen bounds for compound-Poisson loss percentiles
    Feng, Frank Y.
    Powers, Michael R.
    Xiao, Rui'an
    Zhao, Lin
    [J]. SCANDINAVIAN ACTUARIAL JOURNAL, 2017, (06) : 519 - 534
  • [8] On Berry-Esseen bounds for non-instantaneous filters of linear processes
    Cheng, Tsung-Lin
    Ho, Hwai-Chung
    [J]. BERNOULLI, 2008, 14 (02) : 301 - 321
  • [9] Berry-Esseen bounds and multivariate limit theorems for functionals of Rademacher sequences
    Krokowski, Kai
    Reichenbachs, Anselm
    Thale, Christoph
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (02): : 763 - 803
  • [10] Sufficient Condition on Optimal Berry-Esseen Bounds of Functionals of Gaussian Fields
    Kim, Yoon Tae
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2013, 20 (01) : 15 - 22