Sparsity of Runge-Kutta convolution weights for the three-dimensional wave equation

被引:10
|
作者
Banjai, Lehel [1 ]
Kachanovska, Maryna [2 ]
机构
[1] Heriot Watt Univ, Sch Math & Comp Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
Convolution quadrature; Runge-Kutta methods; Time-domain boundary integral equations; Wave equation; BOUNDARY INTEGRAL-EQUATIONS; DISCRETIZED OPERATIONAL CALCULUS; QUADRATURE; MULTISTEP; STABILITY;
D O I
10.1007/s10543-014-0498-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Wave propagation problems in unbounded homogeneous domains can be formulated as time-domain integral equations. An effective way to discretize such equations in time are Runge-Kutta based convolution quadratures. In this paper the behaviour of the weights of such quadratures is investigated. In particular approximate sparseness of their Galerkin discretization is analyzed. Further, it is demonstrated how these results can be used to construct and analyze the complexity of fast algorithms for the assembly of the fully discrete systems.
引用
收藏
页码:901 / 936
页数:36
相关论文
共 50 条
  • [41] STABILITY OF A RUNGE-KUTTA METHOD FOR THE NAVIER-STOKES EQUATION
    SOWA, J
    [J]. BIT, 1990, 30 (03): : 542 - 560
  • [42] RUNGE-KUTTA CONVOLUTION QUADRATURE AND FEM-BEM COUPLING FOR THE TIME-DEPENDENT LINEAR SCHRODINGER EQUATION
    Melenk, Jens Markus
    Rieder, Alexander
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2017, 29 (01) : 189 - 250
  • [43] Hybrid Runge-Kutta and lattice Boltzmann methods: Three-dimensional study of magnetohydrodynamics effect on heat exchange of electronic devices
    Channouf, Salaheddine
    Benhamou, Jaouad
    Lahmer, El Bachir
    Derfoufi, Soufiane
    Horma, Othmane
    Jami, Mohammed
    Mezrhab, Ahmed
    [J]. Physics of Fluids, 2024, 36 (12)
  • [44] Runge-Kutta convolution quadrature methods for well-posed equations with memory
    Calvo, M. P.
    Cuesta, E.
    Palencia, C.
    [J]. NUMERISCHE MATHEMATIK, 2007, 107 (04) : 589 - 614
  • [45] Fast Runge-Kutta methods for nonlinear convolution systems of volterra integral equations
    Capobianco, G.
    Conte, D.
    Del Prete, I.
    Russo, E.
    [J]. BIT NUMERICAL MATHEMATICS, 2007, 47 (02) : 259 - 275
  • [46] A Runge-Kutta Discontinuous Galerkin Method for Detonation Wave Simulation
    Yuan, L.
    Zhang, L.
    [J]. RECENT PROGRESSES IN FLUID DYNAMICS RESEARCH - PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON FLUID MECHANICS, 2011, 1376
  • [47] NUMERICAL SOLUTIONS OF VISCOELASTIC BENDING WAVE EQUATIONS WITH TWO TERM TIME KERNELS BY RUNGE-KUTTA CONVOLUTION QUADRATURE
    Xu, Da
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (06): : 2389 - 2416
  • [48] Runge–Kutta convolution quadrature for operators arising in wave propagation
    Lehel Banjai
    Christian Lubich
    Jens Markus Melenk
    [J]. Numerische Mathematik, 2011, 119 : 1 - 20
  • [49] ON BOUNDING THE ERRORS IN THREE RUNGE-KUTTA TYPE FORMULATIONS.
    Gipson, G.Steven
    [J]. 1600, (11):
  • [50] Acoustic VTI Wave Equation Modeling Based on SPML Theory Used Runge-Kutta Pseudospectral Method
    Tang, Xiaoping
    Gao, Peng
    Zhang, Xu
    Liu, Shengrong
    Bai, Yun
    [J]. NEAR-SURFACE GEOPHYSICS AND GEOHAZARDS, 2014, : 174 - 184