Fast Runge-Kutta methods for nonlinear convolution systems of volterra integral equations

被引:34
|
作者
Capobianco, G.
Conte, D.
Del Prete, I.
Russo, E.
机构
[1] Univ Molise, Dipartimento STAT, I-86090 Pesche, IS, Italy
[2] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy
[3] Univ Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
关键词
volterra integral equations of Hammerstein type; volterra Runge-Kutta methods; convolution; fast numerical methods;
D O I
10.1007/s10543-007-0120-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper fast implicit and explicit Runge-Kutta methods for systems of Volterra integral equations of Hammerstein type are constructed. The coefficients of the methods are expressed in terms of the values of the Laplace transform of the kernel. These methods have been suitably constructed in order to be implemented in an efficient way, thus leading to a very low computational cost both in time and in space. The order of convergence of the constructed methods is studied. The numerical experiments confirm the expected accuracy and computational cost.
引用
收藏
页码:259 / 275
页数:17
相关论文
共 50 条
  • [1] Fast Runge–Kutta methods for nonlinear convolution systems of Volterra integral equations
    G. Capobianco
    D. Conte
    I. Del Prete
    E. Russo
    [J]. BIT Numerical Mathematics, 2007, 47 : 259 - 275
  • [2] Highly stable Runge-Kutta methods for Volterra integral equations
    Izzo, G.
    Russo, E.
    Chiapparelli, C.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2012, 62 (08) : 1002 - 1013
  • [3] Highly stable multistep Runge-Kutta methods for Volterra integral equations
    Wen, Jiao
    Xiao, Aiguo
    Huang, Chengming
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04):
  • [4] A class of Runge-Kutta methods for nonlinear Volterra integral equations of the second kind with singular kernels
    Lichae, Bijan Hasani
    Biazar, Jafar
    Ayati, Zainab
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [5] A new code for Volterra integral equations based on natural Runge-Kutta methods
    Abdi, A.
    Hojjati, G.
    Jackiewicz, Z.
    Mahdi, H.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2019, 143 : 35 - 50
  • [6] IMPLICIT RUNGE-KUTTA METHODS FOR SECOND KIND VOLTERRA INTEGRAL-EQUATIONS
    DE HOOG, F
    WEISS, R
    [J]. NUMERISCHE MATHEMATIK, 1974, 23 (03) : 199 - 213
  • [7] RUNGE-KUTTA METHODS FOR PARABOLIC EQUATIONS AND CONVOLUTION QUADRATURE
    LUBICH, C
    OSTERMANN, A
    [J]. MATHEMATICS OF COMPUTATION, 1993, 60 (201) : 105 - 131
  • [8] Natural Volterra Runge-Kutta methods
    Dajana Conte
    Raffaele D’Ambrosio
    Giuseppe Izzo
    Zdzislaw Jackiewicz
    [J]. Numerical Algorithms, 2014, 65 : 421 - 445
  • [9] Natural Volterra Runge-Kutta methods
    Conte, Dajana
    D'Ambrosio, Raffaele
    Izzo, Giuseppe
    Jackiewicz, Zdzislaw
    [J]. NUMERICAL ALGORITHMS, 2014, 65 (03) : 421 - 445
  • [10] Dissipativity of Runge-Kutta methods for Volterra functional differential equations
    Wen, Liping
    Yu, Yuexin
    Li, Shoufu
    [J]. APPLIED NUMERICAL MATHEMATICS, 2011, 61 (03) : 368 - 381