Virginia-Carolina Peanut iPiPE: Data sharing to improve disease risk models

被引:0
|
作者
Guilford, C. [1 ]
Askew, L. [1 ]
Langston, D. B., Jr. [1 ]
Mehl, H. L. [1 ]
机构
[1] Virginia Tech, Tidewater AREC, Suffolk, VA USA
关键词
D O I
暂无
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
引用
下载
收藏
页数:2
相关论文
共 50 条
  • [41] A computational pipeline for data augmentation towards the improvement of disease classification and risk stratification models: A case study in two clinical domains
    Pezoulas, Vasileios C.
    Grigoriadis, Grigoris, I
    Gkois, George
    Tachos, Nikolaos S.
    Smole, Tim
    Bosnic, Zoran
    Piculin, Matej
    Olivotto, Iacopo
    Barlocco, Fausto
    Robnik-Sikonja, Marko
    Jakovljevic, Djordje G.
    Goules, Andreas
    Tzioufas, Athanasios G.
    Fotiadis, Dimitrios, I
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [42] Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis
    Paige, Ellie
    Barrett, Jessica
    Pennells, Lisa
    Sweeting, Michael
    Willeit, Peter
    Di Angelantonio, Emanuele
    Gudnason, Vilmundur
    Nordestgaard, Borge G.
    Psaty, Bruce M.
    Goldbourt, Uri
    Best, Lyle G.
    Assmann, Gerd
    Salonen, Jukka T.
    Nietert, Paul J.
    Verschuren, W. M. Monique
    Brunner, Eric J.
    Kronmal, Richard A.
    Salomaa, Veikko
    Bakker, Stephan J. L.
    Dagenais, Gilles R.
    Sato, Shinichi
    Jansson, Jan-Hakan
    Willeit, Johann
    Onat, Altan
    de la Camara, Agustin Gomez
    Roussel, Ronan
    Volzke, Henry
    Dankner, Rachel
    Tipping, Robert W.
    Meade, Tom W.
    Donfrancesco, Chiara
    Kuller, Lewis H.
    Peters, Annette
    Gallacher, John
    Kromhout, Daan
    Iso, Hiroyasu
    Knuiman, Matthew
    Casiglia, Edoardo
    Kavousi, Maryam
    Palmieri, Luigi
    Sundstrom, Johan
    Davis, Barry R.
    Njolstad, Inger
    Couper, David
    Danesh, John
    Thompson, Simon G.
    Wood, Angela
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2017, 186 (08) : 899 - 907
  • [43] A comparative study of model-centric and data-centric approaches in the development of cardiovascular disease risk prediction models in the UK Biobank
    Mamouei, Mohammad
    Fisher, Thomas
    Rao, Shishir
    Li, Yikuan
    Salimi-Khorshidi, Ghomalreza
    Rahimi, Kazem
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2023, 4 (04): : 337 - 346
  • [44] When Job Stress Threatens Chinese Workers Combination of Job Stress Models Can Improve the Risk Estimation for Coronary Heart Disease-the BADCAR Study
    Xu, Weixian
    Yu, Haiyi
    Gao, Wei
    Guo, Lijun
    Zeng, Lin
    Zhao, Yiming
    JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 2011, 53 (07) : 771 - 775
  • [45] RETRACTION: Financial risk assessment to improve the accuracy of financial prediction in the internet financial industry using data analytics models (Retraction of Vol 15, art no 925, 2022)
    Du, Guansan
    Elston, Frank
    OPERATIONS MANAGEMENT RESEARCH, 2024, 17 (02) : 805 - 805
  • [46] Using automated clinical data for risk adjustment - Development and validation of six disease-specific mortality predictive models for pay-for-performance
    Tabak, Ying P.
    Johannes, Richard S.
    Silber, Jeffrey H.
    MEDICAL CARE, 2007, 45 (08) : 789 - 805
  • [47] Identifying Patients With Chronic Hepatitis C at High Risk for Clinical Outcomes: Improving Predictive Models of Disease Progression With Novel Methods Integrating Longitudinal Data
    Konerman, Monica
    Brown, Marshall
    Zheng, Yingye
    Lok, Anna S.
    GASTROENTEROLOGY, 2015, 148 (04) : S998 - S998
  • [48] Risk factor identification using machine learning and high-dimensional hospital data to inform propensity and disease risk score models: An applied example in hemostasis-related surgical complications
    Johnston, Stephen S.
    Jha, Aakash
    Roy, Sanjoy
    Pollack, Esther
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2022, 31 : 441 - 442
  • [49] Patient-Reported Symptoms Improve Performance of Risk Prediction Models for Emergency Department Visits Among Patients With Cancer: A Population-Wide Study in Ontario Using Administrative Data
    Sutradhar, Rinku
    Rostami, Mehdi
    Barbera, Lisa
    JOURNAL OF PAIN AND SYMPTOM MANAGEMENT, 2019, 58 (05) : 745 - 755
  • [50] Development and independent validation of prospective mortality risk-adjustment models for Alzheimer's disease and related dementias based on automated pharmacy and medical claims data
    Ricci, JF
    Silverstein, MD
    Martin, BC
    ANNALS OF NEUROLOGY, 2001, 50 (03) : S75 - S75