Virginia-Carolina Peanut iPiPE: Data sharing to improve disease risk models

被引:0
|
作者
Guilford, C. [1 ]
Askew, L. [1 ]
Langston, D. B., Jr. [1 ]
Mehl, H. L. [1 ]
机构
[1] Virginia Tech, Tidewater AREC, Suffolk, VA USA
关键词
D O I
暂无
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
引用
下载
收藏
页数:2
相关论文
共 50 条
  • [31] Non-alcoholic fatty liver disease does not increase dementia risk although histology data might improve risk prediction
    Shang, Ying
    Nasr, Patrik
    Ekstedt, Mattias
    Widman, Linnea
    Stal, Per
    Hultcrantz, Rolf
    Kechagias, Stergios
    Hagstrom, Hannes
    JHEP REPORTS, 2021, 3 (02)
  • [32] Building predictive models: using big data and artificial intelligence technologies to improve public health interventions and disease prevention
    Zhang, Shujuan
    WIENER KLINISCHE WOCHENSCHRIFT, 2023, 135 : S817 - S817
  • [33] RETRACTED ARTICLE: Financial risk assessment to improve the accuracy of financial prediction in the internet financial industry using data analytics models
    Guansan Du
    Frank Elston
    Operations Management Research, 2022, 15 : 925 - 940
  • [34] Comparison of genetic risk prediction models to improve prediction of coronary heart disease in two large cohorts of the MONICA/KORA study
    Bauer, Alina
    Zierer, Astrid
    Gieger, Christian
    Bueyuekoezkan, Mustafa
    Mueller-Nurasyid, Martina
    Grallert, Harald
    Meisinger, Christa
    Strauch, Konstantin
    Prokisch, Holger
    Roden, Michael
    Peters, Annette
    Krumsiek, Jan
    Herder, Christian
    Koenig, Wolfgang
    Thorand, Barbara
    Huth, Cornelia
    GENETIC EPIDEMIOLOGY, 2021, 45 (06) : 633 - 650
  • [35] Can Adding Laboratory Values Improve Risk-Adjustment Mortality Models Using Clinical Percutaneous Cardiac Intervention Registry Data?
    Qian, Feng
    Hannan, Edward L.
    Pine, Michael
    Fry, Donald E.
    Whitman, Kay
    Dennison, Barbara A.
    JOURNAL OF INVASIVE CARDIOLOGY, 2015, 27 (07): : E117 - E124
  • [36] Improving predictive models of risk of disease progression among patients with chronic hepatitis C by incorporating longitudinal data
    Konerman, Monica
    Zhang, Yiwei
    Zhu, Ji
    Higgins, Peter
    Lok, Anna S.
    Waljee, Akbar K.
    HEPATOLOGY, 2014, 60 : 904A - 905A
  • [37] Multivariate genome-wide association study models to improve prediction of Crohn's disease risk and identification of potential novel variants
    Garza-Hernandez, Debora
    Estrada, Karol
    Trevino, Victor
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 145
  • [38] Prediction Models for Celiac Disease Development in Children From High-Risk Families: Data From the PreventCD Cohort
    Meijer, Caroline R.
    Auricchio, Renata
    Putter, Hein
    Castillejo, Gemma
    Crespo, Paula
    Gyimesi, Judit
    Hartman, Corina
    Kolacek, Sanja
    Koletzko, Sibylle
    Korponay-Szabo, Ilma
    Ojinaga, Eva Martinez
    Polanco, Isabel
    Ribes-Koninckx, Carmen
    Shamir, Raanan
    Szajewska, Hania
    Troncone, Riccardo
    Villanacci, Vincenzo
    Werkstetter, Katharina
    Mearin, M. Luisa
    GASTROENTEROLOGY, 2022, 163 (02) : 426 - 436
  • [39] IMPROVED RISK ASSESSMENT FOR PATIENTS WITH PRIOR CARDIOVASCULAR DISEASE IN THE COMMUNITY: NEW PROGNOSTIC MODELS BASED ON ROUTINELY COLLECTED DATA
    Poppe, Katrina
    Doughty, Rob
    Jackson, Rod T.
    Kerr, Andrew
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 65 (10) : A1644 - A1644
  • [40] Flexible time-to-event models for double-interval-censored infectious disease data with clearance of the infection as a competing risk
    Ramjith, Jordache
    Andolina, Chiara
    Bousema, Teun
    Jonker, Marianne A.
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8