Virginia-Carolina Peanut iPiPE: Data sharing to improve disease risk models

被引:0
|
作者
Guilford, C. [1 ]
Askew, L. [1 ]
Langston, D. B., Jr. [1 ]
Mehl, H. L. [1 ]
机构
[1] Virginia Tech, Tidewater AREC, Suffolk, VA USA
关键词
D O I
暂无
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Financial risk assessment to improve the accuracy of financial prediction in the internet financial industry using data analytics models
    Du, Guansan
    Elston, Frank
    OPERATIONS MANAGEMENT RESEARCH, 2022, 15 (3-4) : 925 - 940
  • [22] Can low accuracy disease risk predictor models improve health care using decision support systems?
    Benn, DK
    Dankel, DD
    Kostewicz, SH
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 1998, : 577 - 581
  • [23] Combining PET imaging and blood metabolomics data to improve machine learning models for Parkinson's disease diagnosis
    Glaab, E.
    Greuel, A.
    Trezzi, J. P.
    Jager, C.
    Hodak, Z.
    Timmermann, L.
    Tittgemeyer, M.
    Diederich, N.
    MOVEMENT DISORDERS, 2018, 33 : S658 - S658
  • [24] Clinical risk assessment of patients with chronic kidney disease by using clinical data and multivariate models
    Zewei Chen
    Xin Zhang
    Zhuoyong Zhang
    International Urology and Nephrology, 2016, 48 : 2069 - 2075
  • [25] Clinical risk assessment of patients with chronic kidney disease by using clinical data and multivariate models
    Chen, Zewei
    Zhang, Xin
    Zhang, Zhuoyong
    INTERNATIONAL UROLOGY AND NEPHROLOGY, 2016, 48 (12) : 2069 - 2075
  • [26] Improvement of predictive models of risk of disease progression in chronic hepatitis C by incorporating longitudinal data
    Konerman, Monica A.
    Zhang, Yiwei
    Zhu, Ji
    Higgins, Peter D. R.
    Lok, Anna S. F.
    Waljee, Akbar K.
    HEPATOLOGY, 2015, 61 (06) : 1832 - 1841
  • [27] The Value of Adding Laboratory Data to Coronary Artery Bypass Grafting Registry Data to Improve Models for Risk-Adjusting Provider Mortality Rates
    Hannan, Edward L.
    Qian, Feng
    Pine, Michael
    Fry, Donald E.
    Whitman, Kay
    Dennison, Barbara A.
    ANNALS OF THORACIC SURGERY, 2015, 99 (02): : 495 - 501
  • [28] Risky business: human-related data is lacking from Lyme disease risk models
    Fellin, Erica
    Varin, Mathieu
    Millien, Virginie
    FRONTIERS IN PUBLIC HEALTH, 2023, 11
  • [29] Combining copy number and methylation data from DNA methylation arrays can improve classification and risk stratification models
    Orr, B.
    Alom, M.
    Tran, Q.
    JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2023, 82 (06): : 546 - 547
  • [30] Improving Disease Prediction by Incorporating Family Disease History in Risk Prediction Models with Large-Scale Genetic Data
    Gim, Jungsoo
    Kim, Wonji
    Kwak, Soo Heon
    Choi, Hosik
    Park, Changyi
    Park, Kyong Soo
    Kwon, Sunghoon
    Park, Taesung
    Won, Sungho
    GENETICS, 2017, 207 (03) : 1147 - 1155