Identification of Diseases in Corn Leaves using Convolutional Neural Networks and Boosting

被引:20
|
作者
Bhatt, Prakruti [1 ]
Sarangi, Sanat [1 ]
Shivhare, Anshul [1 ]
Singh, Dineshkumar [1 ]
Pappula, Srinivasu [1 ]
机构
[1] TCS Res & Innovat, Mumbai, Maharashtra, India
关键词
Disease Classification; Adaptive Boosting; Ensemble Classifier; CNN Features;
D O I
10.5220/0007687608940899
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Precision farming technologies are essential for a steady supply of healthy food for the increasing population around the globe. Pests and diseases remain a major threat and a large fraction of crops are lost each year due to them. Automated detection of crop health from images helps in taking timely actions to increase yield while helping reduce input cost. With an aim to detect crop diseases and pests with high confidence, we use convolutional neural networks (CNN) and boosting techniques on Corn leaf images in different health states. The queen of cereals, Corn, is a versatile crop that has adapted to various climatic conditions. It is one of the major food crops in India along with wheat and rice. Considering that different diseases might have different treatments, incorrect detection can lead to incorrect remedial measures. Although CNN based models have been used for classification tasks, we aim to classify similar looking disease manifestations with a higher accuracy compared to the one obtained by existing deep learning methods. We have evaluated ensembles of CNN based image features, with a classifier and boosting in order to achieve plant disease classification. Using an ensemble of Adaptive Boosting cascaded with a decision tree based classifier trained on features from CNN, we have achieved an accuracy of 98% in classifying the Corn leaf images into four different categories viz. Healthy, Common Rust, Late Blight and Leaf Spot. This is about 8% improvement in classification performance when compared to CNN only.
引用
收藏
页码:894 / 899
页数:6
相关论文
共 50 条
  • [21] Detecting Calamansi Diseases through their Leaves Using Convolutional Neural Network
    Mariano, Gian Carlo L.
    Briones, Darren M.
    Villaverde, Jocelyn F.
    2024 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS, I2CACIS 2024, 2024, : 128 - 133
  • [22] Tree log identification using convolutional neural networks
    Holmstrom, Eero
    Raatevaara, Antti
    Pohjankukka, Jonne
    Korpunen, Heikki
    Uusitalo, Jori
    SMART AGRICULTURAL TECHNOLOGY, 2023, 4
  • [23] Odonata identification using Customized Convolutional Neural Networks
    Theivaprakasham, Hari
    Darshana, S.
    Ravi, Vinayakumar
    Sowmya, V.
    Gopalakrishnan, E. A.
    Soman, K. P.
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 206
  • [24] Snake Identification System Using Convolutional Neural Networks
    Dube, Samkeliso Suku
    Bhuru, Admire
    2022 1st Zimbabwe Conference of Information and Communication Technologies, ZCICT 2022, 2022,
  • [25] Identification of Client Profile Using Convolutional Neural Networks
    de Azevedo, Victor Ribeiro
    Nedjah, Nadia
    Mourelle, Luiza de Macedo
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT III, 2020, 12251 : 103 - 118
  • [26] Detailed Identification of Fingerprints using Convolutional Neural Networks
    Shehu, Yahaya Isah
    Ruiz-Garcia, Ariel
    Palade, Vasile
    James, Anne
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 1161 - 1165
  • [27] Supermarket Commodity Identification Using Convolutional Neural Networks
    Li, Jingsong
    Wang, Xiaochao
    Su, Hang
    PROCEEDINGS OF 2016 2ND INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTERNET OF THINGS (CCIOT), 2016, : 115 - 119
  • [28] Identification of Trolling in Memes Using Convolutional Neural Networks
    Shridara, Manohar Gowdru
    Hladek, Daniel
    Pleva, Matus
    Haluska, Renat
    2023 33RD INTERNATIONAL CONFERENCE RADIOELEKTRONIKA, RADIOELEKTRONIKA, 2023,
  • [29] Camera Model Identification Using Convolutional Neural Networks
    Kuzin, Artur
    Fattakhov, Artur
    Kibardin, Ilya
    Iglovikov, Vladimir I.
    Dautov, Ruslan
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 3107 - 3110
  • [30] Identification of Traditional Motifs using Convolutional Neural Networks
    Jurj, Sorin Liviu
    Opritoiu, Flavius
    Vladutiu, Mircea
    2018 IEEE 24TH INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME), 2018, : 191 - 196