Identification of Client Profile Using Convolutional Neural Networks

被引:1
|
作者
de Azevedo, Victor Ribeiro [1 ]
Nedjah, Nadia [1 ]
Mourelle, Luiza de Macedo [1 ]
机构
[1] Univ Estado Rio De Janeiro, Posgrad Program Elect Engn, Rio De Janeiro, Brazil
关键词
Convolutional Neural Networks; Deep learning; Social media image classification; Customer profile identification;
D O I
10.1007/978-3-030-58808-3_9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, a convolutional neural network is used to predict the interest of social networks users in certain product categories. The goal is to make a multi-class image classification to target social networks users as potential products consumers. In this paper, we compare the performance of several artificial neural network training algorithms using adaptive learning: stochastic gradient descent, adaptive gradient descent, adaptive moment estimation and its version based on infinity norm and root mean square prop. The comparison of the training algorithms shows that the algorithm based on adaptive moment estimation is the most appropriate to predict user's interest and profile, achieving about 99% classification accuracy.
引用
收藏
页码:103 / 118
页数:16
相关论文
共 50 条
  • [1] Client profile prediction using convolutional neural networks for efficient recommendation systems in the context of smart factories
    Nedjah, Nadia
    Azevedo, Victor Ribeiro
    Mourelle, Luiza De Macedo
    [J]. ENTERPRISE INFORMATION SYSTEMS, 2022, 16 (10-11) : 1653 - 1693
  • [2] Pianist Identification Using Convolutional Neural Networks
    Tang, Jingjing
    Wiggins, Geraint
    Fazekas, Gyorgy
    [J]. 2023 4TH INTERNATIONAL SYMPOSIUM ON THE INTERNET OF SOUNDS, 2023, : 191 - 196
  • [3] Microphone Identification Using Convolutional Neural Networks
    Baldini, Gianmarco
    Amerini, Irene
    Gentile, Claudio
    [J]. IEEE SENSORS LETTERS, 2019, 3 (07)
  • [4] Tree log identification using convolutional neural networks
    Holmstrom, Eero
    Raatevaara, Antti
    Pohjankukka, Jonne
    Korpunen, Heikki
    Uusitalo, Jori
    [J]. SMART AGRICULTURAL TECHNOLOGY, 2023, 4
  • [5] Odonata identification using Customized Convolutional Neural Networks
    Theivaprakasham, Hari
    Darshana, S.
    Ravi, Vinayakumar
    Sowmya, V.
    Gopalakrishnan, E. A.
    Soman, K. P.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 206
  • [6] Detailed Identification of Fingerprints using Convolutional Neural Networks
    Shehu, Yahaya Isah
    Ruiz-Garcia, Ariel
    Palade, Vasile
    James, Anne
    [J]. 2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 1161 - 1165
  • [7] Supermarket Commodity Identification Using Convolutional Neural Networks
    Li, Jingsong
    Wang, Xiaochao
    Su, Hang
    [J]. PROCEEDINGS OF 2016 2ND INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTERNET OF THINGS (CCIOT), 2016, : 115 - 119
  • [8] Choreographic Pose Identification using Convolutional Neural Networks
    Bakalos, Nikolaos
    Rallis, Ioannis
    Doulamis, Nikolaos
    Doulamis, Anastasios
    Protopapadakis, Eftychios
    Voulodimos, Athanasios
    [J]. 2019 11TH INTERNATIONAL CONFERENCE ON VIRTUAL WORLDS AND GAMES FOR SERIOUS APPLICATIONS (VS-GAMES), 2019, : 95 - 101
  • [9] Identification of Traditional Motifs using Convolutional Neural Networks
    Jurj, Sorin Liviu
    Opritoiu, Flavius
    Vladutiu, Mircea
    [J]. 2018 IEEE 24TH INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME), 2018, : 191 - 196
  • [10] Identification of Trolling in Memes Using Convolutional Neural Networks
    Shridara, Manohar Gowdru
    Hladek, Daniel
    Pleva, Matus
    Haluska, Renat
    [J]. 2023 33RD INTERNATIONAL CONFERENCE RADIOELEKTRONIKA, RADIOELEKTRONIKA, 2023,