Camera Model Identification Using Convolutional Neural Networks

被引:0
|
作者
Kuzin, Artur [1 ]
Fattakhov, Artur [2 ]
Kibardin, Ilya [2 ]
Iglovikov, Vladimir I. [3 ]
Dautov, Ruslan [4 ]
机构
[1] Moscow Inst Phys & Technol, Dbrain ODS Ai, Moscow, Russia
[2] Moscow Inst Phys & Technol, Dept Innovat & High Technol, Moscow, Russia
[3] Lyft Inc, Autonomous Vehicle Div, Level 5, San Francisco, CA USA
[4] Shenzhen Univ, Big Data Inst, Shenzhen, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Source camera identification is the process of determining which camera or model has been used to capture an image. In recent years, there has been a rapid growth of research interest in the domain of forensics. In the current work, we describe our Deep Learning approach to the camera detection task of 10 cameras as a part of the Camera Model Identification Challenge hosted by Kaggle.com where our team finished 2nd out of 582 teams with the accuracy on the unseen data of 98%. Augmentations that allowed a stay robust against transformations. A number of experiments are carried out on datasets collected by organizers and scraped from the web.
引用
收藏
页码:3107 / 3110
页数:4
相关论文
共 50 条
  • [1] Camera Model Identification With The Use of Deep Convolutional Neural Networks
    Tuama, Amel
    Comby, Frederic
    Chaumont, Marc
    [J]. 2016 8TH IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS 2016), 2016,
  • [2] First Steps Toward Camera Model Identification With Convolutional Neural Networks
    Bondi, Luca
    Baroffio, Luca
    Gueera, David
    Bestagini, Paolo
    Delp, Edward J.
    Tubaro, Stefano
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (03) : 259 - 263
  • [3] Individual Source Camera Identification with Convolutional Neural Networks
    Bernacki, Jaroslaw
    Costa, Kelton A. P.
    Scherer, Rafal
    [J]. RECENT CHALLENGES IN INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, 2022, 1716 : 45 - 55
  • [4] Robustness of digital camera identification with convolutional neural networks
    Jarosław Bernacki
    [J]. Multimedia Tools and Applications, 2021, 80 : 29657 - 29673
  • [5] Robustness of digital camera identification with convolutional neural networks
    Bernacki, Jaroslaw
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (19) : 29657 - 29673
  • [6] Remarks on Speeding up the Digital Camera Identification using Convolutional Neural Networks
    Bernacki, Jaroslaw
    Scherer, Rafal
    [J]. VIETNAM JOURNAL OF COMPUTER SCIENCE, 2023, 10 (04) : 537 - 555
  • [7] Multispectral Camera Calibration Using Convolutional Neural Networks
    Trujillo, Ivan A. Juarez
    de Paz, Jonny P. Zavala
    Sandoval, Omar Palillero
    Velasquez, Francisco A. Castillo
    [J]. COMPUTACION Y SISTEMAS, 2023, 27 (03): : 801 - 810
  • [8] Source camera model identification based on convolutional neural networks with local binary patterns coding
    Wang, Bo
    Yin, Jianfeng
    Tan, Shunquan
    Li, Yabin
    Li, Ming
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2018, 68 : 162 - 168
  • [9] RemNet: remnant convolutional neural network for camera model identification
    Abdul Muntakim Rafi
    Thamidul Islam Tonmoy
    Uday Kamal
    Q. M. Jonathan Wu
    Md. Kamrul Hasan
    [J]. Neural Computing and Applications, 2021, 33 : 3655 - 3670
  • [10] RemNet: remnant convolutional neural network for camera model identification
    Rafi, Abdul Muntakim
    Tonmoy, Thamidul Islam
    Kamal, Uday
    Wu, Q. M. Jonathan
    Hasan, Md Kamrul
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (08): : 3655 - 3670