Camera Model Identification Using Convolutional Neural Networks

被引:0
|
作者
Kuzin, Artur [1 ]
Fattakhov, Artur [2 ]
Kibardin, Ilya [2 ]
Iglovikov, Vladimir I. [3 ]
Dautov, Ruslan [4 ]
机构
[1] Moscow Inst Phys & Technol, Dbrain ODS Ai, Moscow, Russia
[2] Moscow Inst Phys & Technol, Dept Innovat & High Technol, Moscow, Russia
[3] Lyft Inc, Autonomous Vehicle Div, Level 5, San Francisco, CA USA
[4] Shenzhen Univ, Big Data Inst, Shenzhen, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Source camera identification is the process of determining which camera or model has been used to capture an image. In recent years, there has been a rapid growth of research interest in the domain of forensics. In the current work, we describe our Deep Learning approach to the camera detection task of 10 cameras as a part of the Camera Model Identification Challenge hosted by Kaggle.com where our team finished 2nd out of 582 teams with the accuracy on the unseen data of 98%. Augmentations that allowed a stay robust against transformations. A number of experiments are carried out on datasets collected by organizers and scraped from the web.
引用
收藏
页码:3107 / 3110
页数:4
相关论文
共 50 条
  • [31] Speaker Identification Using Entropygrams and Convolutional Neural Networks
    Camarena-Ibarrola, Antonio
    Figueroa, Karina
    Garcia, Jonathan
    [J]. ADVANCES IN SOFT COMPUTING, MICAI 2020, PT I, 2020, 12468 : 23 - 34
  • [32] Detection of Pedestrians in Reverse Camera Using Multimodal Convolutional Neural Networks
    Reveles-Gomez, Luis C.
    Luna-Garcia, Huizilopoztli
    Celaya-Padilla, Jose M.
    Barria-Huidobro, Cristian
    Gamboa-Rosales, Hamurabi
    Solis-Robles, Roberto
    Arceo-Olague, Jose G.
    Galvan-Tejada, Jorge I.
    Galvan-Tejada, Carlos E.
    Rondon, David
    Villalba-Condori, Klinge O.
    [J]. SENSORS, 2023, 23 (17)
  • [33] Automatic extrinsic camera parameters calibration using Convolutional Neural Networks
    Itu, Razvan
    Borza, Diana
    Danescu, Radu
    [J]. 2017 13TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP), 2017, : 273 - 278
  • [34] Person Identification by Footstep Sound Using Convolutional Neural Networks
    Algermissen, Stephan
    Hoernlein, Max
    [J]. APPLIED MECHANICS, 2021, 2 (02): : 257 - 273
  • [35] Ant genera identification using an ensemble of convolutional neural networks
    Marques, Alan Caio R.
    Raimundo, Marcos M.
    Cavalheiro, Ellen Marianne B.
    Salles, Luis F. P.
    Lyra, Christiano
    Von Zuben, Fernando J.
    [J]. PLOS ONE, 2018, 13 (01):
  • [36] Identification of Plant Nutrient Deficiencies Using Convolutional Neural Networks
    Watchareeruetai, Ukrit
    Noinongyao, Pavit
    Wattanapaiboonsuk, Chaiwat
    Khantiviriya, Puriwat
    Duangsrisai, Sutsawat
    [J]. 2018 6TH INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2018,
  • [37] Identification of rice diseases using deep convolutional neural networks
    Lu, Yang
    Yi, Shujuan
    Zeng, Nianyin
    Liu, Yurong
    Zhang, Yong
    [J]. NEUROCOMPUTING, 2017, 267 : 378 - 384
  • [38] Damage identification in sandwich structures using Convolutional Neural Networks
    Viotti, Ian Dias
    Ribeiro Jr, Ronny Francis
    Gomes, Guilherme Ferreira
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 220
  • [39] Language Identification Using Deep Convolutional Recurrent Neural Networks
    Bartz, Christian
    Herold, Tom
    Yang, Haojin
    Meinel, Christoph
    [J]. NEURAL INFORMATION PROCESSING (ICONIP 2017), PT VI, 2017, 10639 : 880 - 889
  • [40] Wireless Technology Identification Using Deep Convolutional Neural Networks
    Bitar, Naim
    Muhammad, Siraj
    Refai, Hazem H.
    [J]. 2017 IEEE 28TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2017,