Branching rules for Specht modules

被引:5
|
作者
Ellers, Harald
Murray, John [1 ]
机构
[1] Natl Univ Ireland Univ Maynooth, Dept Math, Maynooth, Kildare, Ireland
[2] No Illinois Univ, Dept Math, De Kalb, IL 60115 USA
关键词
symmetric group; Specht module; Jucys-Murphy element;
D O I
10.1016/j.jalgebra.2006.07.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S-lambda be a Specht module for the symmetric group Sigma(n) defined over a field of characteristic different from 2, and let L-n-1 be the sum of all transpositions in Sigma(n)-1 that do not fix n - 1. It is shown that the minimal polynomial of L-n-1 acting on S lambda has maximum possible degree. As a consequence, the indecomposable components of the restriction of S-lambda to Sigma(n)-1 coincide with the block components. Analogous results are proved for L-n+1 and the Sigma(n)+1 -module that is induced from S-lambda. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:278 / 286
页数:9
相关论文
共 50 条
  • [1] Complete branching rules for Specht modules
    Liu, Ricky Ini
    JOURNAL OF ALGEBRA, 2016, 446 : 77 - 102
  • [2] Carter-Payne homomorphisms and branching rules for endomorphism rings of Specht modules
    Ellers, Harald
    Murray, John
    JOURNAL OF GROUP THEORY, 2010, 13 (04) : 477 - 501
  • [3] Specht module branching rules for wreath products of symmetric groups
    Green, Reuben
    ALGEBRAIC COMBINATORICS, 2022, 5 (04): : 609 - 628
  • [4] On the cohomology of Specht modules
    Hemmer, David J.
    Nakano, Daniel K.
    JOURNAL OF ALGEBRA, 2006, 306 (01) : 191 - 200
  • [5] Invariants of Specht modules
    Donkin, Stephen
    Geranios, Haralampos
    JOURNAL OF ALGEBRA, 2015, 439 : 188 - 224
  • [6] Reducible Specht modules
    Fayers, M
    JOURNAL OF ALGEBRA, 2004, 280 (02) : 500 - 504
  • [7] Graded Specht modules
    Brundan, Jonathan
    Kleshchev, Alexander
    Wang, Weiqiang
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 655 : 61 - 87
  • [8] On the structure of Specht modules
    Fayers, M
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 : 85 - 102
  • [9] VERTICES OF SPECHT MODULES
    MURPHY, GM
    PEEL, MH
    JOURNAL OF ALGEBRA, 1984, 86 (01) : 85 - 97
  • [10] A family of modules with Specht and dual Specht filtrations
    Paget, Rowena
    JOURNAL OF ALGEBRA, 2007, 312 (02) : 880 - 890